
    bi+                     P    d dl mZmZ d dlmZmZ d dlmZ e G d de             Zy)    )	dataclassfield)AnyOptional)TrainingArgumentsc                       e Zd ZU dZej
                  ddgz   Z edddi      Zee	d<    ed	dd
i      Z
ee	d<    edddi      Zee   e	d<    edddi      Zee   e	d<    edddi      Zee   e	d<    edddi      Zee   e	d<    edddi      Zee	d<    eddddgd      Zee	d<    eddd i      Zee	d!<    eddd"i      Zee	d#<    ed$dd%i      Zee	d&<    eddd'i      Zee   e	d(<    ed)d*d)d+gd      Zee	d,<    ed-dd.i      Zee	d/<    eddd0i      Zee   e	d1<    ed2dd3i      Zee	d4<    ed-dd5i      Zee	d6<    eddd7i      Zeeee f      e	d<    eddd8i      Z!eeee f      e	d<    eddd9i      Z"ee   e	d:<    ed-dd;i      Z#ee	d<<    ed=dd>i      Z$ee	d?<    fd@Z% xZ&S )A	KTOConfigu  
    Configuration class for the [`KTOTrainer`].

    This class includes only the parameters that are specific to KTO training. For a full list of training arguments,
    please refer to the [`~transformers.TrainingArguments`] documentation. Note that default values in this class may
    differ from those in [`~transformers.TrainingArguments`].

    Using [`~transformers.HfArgumentParser`] we can turn this class into
    [argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the
    command line.

    Parameters:
        max_length (`int` or `None`, *optional*, defaults to `1024`):
            Maximum length of the sequences (prompt + completion) in the batch. This argument is required if you want
            to use the default data collator.
        max_prompt_length (`int` or `None`, *optional*, defaults to `512`):
            Maximum length of the prompt. This argument is required if you want to use the default data collator.
        max_completion_length (`int` or `None`, *optional*, defaults to `None`):
            Maximum length of the completion. This argument is required if you want to use the default data collator
            and your model is an encoder-decoder.
        beta (`float`, *optional*, defaults to `0.1`):
            Parameter controlling the deviation from the reference model. Higher β means less deviation from the
            reference model.
        loss_type (`str`, *optional*, defaults to `"kto"`):
            Type of loss to use. Possible values are:

                - `"kto"`: KTO loss from the [KTO](https://huggingface.co/papers/2402.01306) paper.
                - `"apo_zero_unpaired"`: Unpaired variant of APO-zero loss from the
                  [APO](https://huggingface.co/papers/2408.06266) paper.

        desirable_weight (`float`, *optional*, defaults to `1.0`):
            Desirable losses are weighed by this factor to counter unequal number of desirable and undesirable paris.
        undesirable_weight (`float`, *optional*, defaults to `1.0`):
            Undesirable losses are weighed by this factor to counter unequal number of desirable and undesirable pairs.
        label_pad_token_id (`int`, *optional*, defaults to `-100`):
            Label pad token id. This argument is required if you want to use the default data collator.
        padding_value (`int` or `None`, *optional*, defaults to `None`):
            Padding value to use. If `None`, the padding value of the tokenizer is used.
        truncation_mode (`str`, *optional*, defaults to `"keep_end"`):
            Truncation mode to use when the prompt is too long. Possible values are `"keep_end"` or `"keep_start"`.
            This argument is required if you want to use the default data collator.
        generate_during_eval (`bool`, *optional*, defaults to `False`):
            If `True`, generates and logs completions from both the model and the reference model to W&B or Comet
            during evaluation.
        is_encoder_decoder (`bool` or `None`, *optional*, defaults to `None`):
            When using the `model_init` argument (callable) to instantiate the model instead of the `model` argument,
            you need to specify if the model returned by the callable is an encoder-decoder model.
        precompute_ref_log_probs (`bool`, *optional*, defaults to `False`):
            Whether to precompute reference model log probabilities for training and evaluation datasets. This is
            useful when training without the reference model to reduce the total GPU memory needed.
        model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`):
            Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the model from a
            string.
        ref_model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`):
            Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the reference model
            from a string.
        dataset_num_proc: (`int` or `None`, *optional*, defaults to `None`):
            Number of processes to use for processing the dataset.
        disable_dropout (`bool`, *optional*, defaults to `True`):
            Whether to disable dropout in the model and reference model.
        use_liger_loss (`bool`, *optional*, defaults to `False`):
            Whether to use Liger loss. It requires liger-kernel to be installed.
        base_model_attribute_name (`str`, *optional*, defaults to `"model"`):
            Name of the attribute in the model that contains the base model. This is used to get the base model from
            the model when the model does not have a `get_decoder` method in the case when `use_liger_loss` is `True`.
    model_init_kwargsref_model_init_kwargsgư>helpz$The initial learning rate for AdamW.)defaultmetadatalearning_rate
   zLog every X updates steps. Should be an integer or a float in range `[0,1)`. If smaller than 1, will be interpreted as ratio of total training steps.logging_stepsNzWhether to use bf16 (mixed) precision instead of 32-bit. Requires Ampere or higher NVIDIA architecture or Intel XPU or using CPU (use_cpu) or Ascend NPU. If not set, it defaults to `True` if `fp16` is not set.bf16i   zCMaximum length of the sequences (prompt + completion) in the batch.
max_lengthi   zMaximum length of the prompt. This argument is required if you want to use the default data collator and your model is an encoder-decoder.max_prompt_lengthzMaximum length of the completion. This argument is required if you want to use the default data collator and your model is an encoder-decoder.max_completion_lengthg?uv   Parameter controlling the deviation from the reference model. Higher β means less deviation from the reference model.betaktozType of loss to use.apo_zero_unpaired)r   choices	loss_typeg      ?ziDesirable losses are weighed by this factor to counter unequal number of desirable and undesirable pairs.desirable_weightzkUndesirable losses are weighed by this factor to counter unequal number of desirable and undesirable pairs.undesirable_weightiz[Label pad token id. This argument is required if you want to use the default data collator.label_pad_token_idzLPadding value to use. If `None`, the padding value of the tokenizer is used.padding_valuekeep_endz3Truncation mode to use when the prompt is too long.
keep_starttruncation_modeFzoIf `True`, generates and logs completions from both the model and the reference model to W&B during evaluation.generate_during_evalzWhen using the `model_init` argument (callable) to instantiate the model instead of the `model` argument, you need to specify if the model returned by the callable is an encoder-decoder model.is_encoder_decoderTz(Whether to disable dropout in the model.disable_dropoutzWhether to precompute reference model log probabilities for training and evaluation datasets. This is useful when training without the reference model to reduce the total GPU memory needed.precompute_ref_log_probszoKeyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the model from a string.zyKeyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the reference model from a string.z6Number of processes to use for processing the dataset.dataset_num_proczDWhether to use Liger loss. It requires liger-kernel to be installed.use_liger_lossmodelzName of the attribute in the model that contains the base model. This is used to get the base model from the model when the model does not have a `get_decoder` method in the case when `use_liger_loss` is `True`.base_model_attribute_namec                 v    | j                   | j                   n| j                   | _         t        |           y )N)r   fp16super__post_init__)self	__class__s    Q/home/cdr/jupyterlab/.venv/lib/python3.12/site-packages/trl/trainer/kto_config.pyr-   zKTOConfig.__post_init__   s*    '+yy'8Odii	    )'__name__
__module____qualname____doc__r   _VALID_DICT_FIELDSr   r   float__annotations__r   r   r   boolr   intr   r   r   r   strr   r   r   r   r!   r"   r#   r$   r%   r
   dictr   r   r&   r'   r)   r-   __classcell__)r/   s   @r0   r	   r	      sb   AF +==ATVm@nn !@AM5  ! D
M5  ! !
D(4.  !&_`!J  (- =
(x}  ,1 =
,8C=   #
D%  *23
Is  $ !
e  !& !
!  $q
  $)hi$M8C=  !I"L1
OS  "' !
"$  */ o
*  "DEOT  &+ n
&d  38 
3xS#X/  7< -
78DcN3  ',RS'hsm  !`aND  &+ *
&s    r1   r	   N)	dataclassesr   r   typingr   r   transformersr   r	    r1   r0   <module>rB      s/    )   * U ! U  U r1   