
    biz>                     ,   d Z ddlZddlZddlmZ ddlmZ ddlm	Z	m
Z
mZmZmZmZ ddgZ e        ed	 d
 dd dd      	 	 	 d$dej                   j"                  dej                   j"                  dz  dedz  dedej(                  ej*                  z  f
d              Zd%dZ e        ed dd e      ddddddej                   j"                  dedz  dedz  dededej(                  ej*                  z  fd              Zd Zd  Zd! Zd" Zd# Zy)&z5
Created on Fri Apr  2 09:06:05 2021

@author: matth
    N)special   )_axis_nan_policy_factory)array_namespace
xp_promote	xp_device	is_marray_share_masksxp_capabilitiesentropydifferential_entropyc                     | S N xs    O/home/cdr/jupyterlab/.venv/lib/python3.12/site-packages/scipy/stats/_entropy.py<lambda>r          a     c                     d| v r| d   dS dS )Nqk   r   r   )kwgss    r   r   r      s!    dltDz5  r   c                     | fS r   r   r   _s     r   r   r      s    qd r   T)	n_samples	n_outputsresult_to_tuplepaired	too_smallpkr   baseaxisreturnc                    ||dk  rt        d      t        | |      }t        | |d|      \  } }t        j                  d      5  |(t        | ||      \  } }||j                  ||d	      z  }| |j                  | |d	      z  } ddd       |t        j                  |       }nit        |      rHt        j                  | j                  |j                        }|j                  || j                  
      }nt        j                  | |      }|j                  ||      }||t        j                  |      z  }|S # 1 sw Y   xY w)a  
    Calculate the Shannon entropy/relative entropy of given distribution(s).

    If only probabilities `pk` are given, the Shannon entropy is calculated as
    ``H = -sum(pk * log(pk))``.

    If `qk` is not None, then compute the relative entropy
    ``D = sum(pk * log(pk / qk))``. This quantity is also known
    as the Kullback-Leibler divergence.

    This routine will normalize `pk` and `qk` if they don't sum to 1.

    Parameters
    ----------
    pk : array_like
        Defines the (discrete) distribution. Along each axis-slice of ``pk``,
        element ``i`` is the  (possibly unnormalized) probability of event
        ``i``.
    qk : array_like, optional
        Sequence against which the relative entropy is computed. Should be in
        the same format as `pk`.
    base : float, optional
        The logarithmic base to use, defaults to ``e`` (natural logarithm).
    axis : int, optional
        The axis along which the entropy is calculated. Default is 0.

    Returns
    -------
    S : {float, array_like}
        The calculated entropy.

    Notes
    -----
    Informally, the Shannon entropy quantifies the expected uncertainty
    inherent in the possible outcomes of a discrete random variable.
    For example,
    if messages consisting of sequences of symbols from a set are to be
    encoded and transmitted over a noiseless channel, then the Shannon entropy
    ``H(pk)`` gives a tight lower bound for the average number of units of
    information needed per symbol if the symbols occur with frequencies
    governed by the discrete distribution `pk` [1]_. The choice of base
    determines the choice of units; e.g., ``e`` for nats, ``2`` for bits, etc.

    The relative entropy, ``D(pk|qk)``, quantifies the increase in the average
    number of units of information needed per symbol if the encoding is
    optimized for the probability distribution `qk` instead of the true
    distribution `pk`. Informally, the relative entropy quantifies the expected
    excess in surprise experienced if one believes the true distribution is
    `qk` when it is actually `pk`.

    A related quantity, the cross entropy ``CE(pk, qk)``, satisfies the
    equation ``CE(pk, qk) = H(pk) + D(pk|qk)`` and can also be calculated with
    the formula ``CE = -sum(pk * log(qk))``. It gives the average
    number of units of information needed per symbol if an encoding is
    optimized for the probability distribution `qk` when the true distribution
    is `pk`. It is not computed directly by `entropy`, but it can be computed
    using two calls to the function (see Examples).

    See [2]_ for more information.

    References
    ----------
    .. [1] Shannon, C.E. (1948), A Mathematical Theory of Communication.
           Bell System Technical Journal, 27: 379-423.
           https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
    .. [2] Thomas M. Cover and Joy A. Thomas. 2006. Elements of Information
           Theory (Wiley Series in Telecommunications and Signal Processing).
           Wiley-Interscience, USA.


    Examples
    --------
    The outcome of a fair coin is the most uncertain:

    >>> import numpy as np
    >>> from scipy.stats import entropy
    >>> base = 2  # work in units of bits
    >>> pk = np.array([1/2, 1/2])  # fair coin
    >>> H = entropy(pk, base=base)
    >>> H
    1.0
    >>> H == -np.sum(pk * np.log(pk)) / np.log(base)
    True

    The outcome of a biased coin is less uncertain:

    >>> qk = np.array([9/10, 1/10])  # biased coin
    >>> entropy(qk, base=base)
    0.46899559358928117

    The relative entropy between the fair coin and biased coin is calculated
    as:

    >>> D = entropy(pk, qk, base=base)
    >>> D
    0.7369655941662062
    >>> np.isclose(D, np.sum(pk * np.log(pk/qk)) / np.log(base), rtol=4e-16, atol=0)
    True

    The cross entropy can be calculated as the sum of the entropy and
    relative entropy`:

    >>> CE = entropy(pk, base=base) + entropy(pk, qk, base=base)
    >>> CE
    1.736965594166206
    >>> CE == -np.sum(pk * np.log(qk)) / np.log(base)
    True

    Nr   +`base` must be a positive number or `None`.T)	broadcastxpignore)invalidr+   r&   keepdims)maskr&   )
ValueErrorr   r   nperrstater
   sumr   entrr	   rel_entrdataasarrayr1   mathlog)r$   r   r%   r&   r+   vecSs          r   r   r      s4   x DAIFGG	R	 BB$26FB	X	& 7>!"bR0FBbffRdTf::B"&&$&66	7 
zll2R=""277BGG4C**Srww*/C""2r*C
sA	TXXd^H%7 7s   AEE
c                     | d   }|j                   |   }|j                  d      }|+t        j                  t        j                  |      dz         }dd|z  cxk  r|k  sy yy)Nr   window_length      ?r   TF)shapegetr;   floorsqrt)sampleskwargsr&   valuesnr@   s         r   "_differential_entropy_is_too_smallrJ      sh    QZFTAJJ/M

499Q<##56M!%A% &r   c                     | S r   r   r   s    r   r   r      r   r   c                     | fS r   r   r   s     r   r   r      s    A4 r   )r    r!   r#   auto)r@   r%   r&   methodrH   r@   rN   c                   t        |       }t        | d|      } |j                  | |d      } | j                  d   }|+t	        j
                  t	        j                  |      dz         }dd|z  cxk  r|k  sn t        d| d| d      ||d	k  rt        d
      |j                  | d      }t        t        t        t        t        d}|j                         }||vrdt        |       }	t        |	      |dk(  r|dk  rd}n
|dk  rd}nd} ||   |||      }
||
t	        j                  |      z  }
|j!                  |
| j"                        S )aV  Given a sample of a distribution, estimate the differential entropy.

    Several estimation methods are available using the `method` parameter. By
    default, a method is selected based the size of the sample.

    Parameters
    ----------
    values : sequence
        Sample from a continuous distribution.
    window_length : int, optional
        Window length for computing Vasicek estimate. Must be an integer
        between 1 and half of the sample size. If ``None`` (the default), it
        uses the heuristic value

        .. math::
            \left \lfloor \sqrt{n} + 0.5 \right \rfloor

        where :math:`n` is the sample size. This heuristic was originally
        proposed in [2]_ and has become common in the literature.
    base : float, optional
        The logarithmic base to use, defaults to ``e`` (natural logarithm).
    axis : int, optional
        The axis along which the differential entropy is calculated.
        Default is 0.
    method : {'vasicek', 'van es', 'ebrahimi', 'correa', 'auto'}, optional
        The method used to estimate the differential entropy from the sample.
        Default is ``'auto'``.  See Notes for more information.

    Returns
    -------
    entropy : float
        The calculated differential entropy.

    Notes
    -----
    This function will converge to the true differential entropy in the limit

    .. math::
        n \to \infty, \quad m \to \infty, \quad \frac{m}{n} \to 0

    The optimal choice of ``window_length`` for a given sample size depends on
    the (unknown) distribution. Typically, the smoother the density of the
    distribution, the larger the optimal value of ``window_length`` [1]_.

    The following options are available for the `method` parameter.

    * ``'vasicek'`` uses the estimator presented in [1]_. This is
      one of the first and most influential estimators of differential entropy.
    * ``'van es'`` uses the bias-corrected estimator presented in [3]_, which
      is not only consistent but, under some conditions, asymptotically normal.
    * ``'ebrahimi'`` uses an estimator presented in [4]_, which was shown
      in simulation to have smaller bias and mean squared error than
      the Vasicek estimator.
    * ``'correa'`` uses the estimator presented in [5]_ based on local linear
      regression. In a simulation study, it had consistently smaller mean
      square error than the Vasiceck estimator, but it is more expensive to
      compute.
    * ``'auto'`` selects the method automatically (default). Currently,
      this selects ``'van es'`` for very small samples (<10), ``'ebrahimi'``
      for moderate sample sizes (11-1000), and ``'vasicek'`` for larger
      samples, but this behavior is subject to change in future versions.

    All estimators are implemented as described in [6]_.

    References
    ----------
    .. [1] Vasicek, O. (1976). A test for normality based on sample entropy.
           Journal of the Royal Statistical Society:
           Series B (Methodological), 38(1), 54-59.
    .. [2] Crzcgorzewski, P., & Wirczorkowski, R. (1999). Entropy-based
           goodness-of-fit test for exponentiality. Communications in
           Statistics-Theory and Methods, 28(5), 1183-1202.
    .. [3] Van Es, B. (1992). Estimating functionals related to a density by a
           class of statistics based on spacings. Scandinavian Journal of
           Statistics, 61-72.
    .. [4] Ebrahimi, N., Pflughoeft, K., & Soofi, E. S. (1994). Two measures
           of sample entropy. Statistics & Probability Letters, 20(3), 225-234.
    .. [5] Correa, J. C. (1995). A new estimator of entropy. Communications
           in Statistics-Theory and Methods, 24(10), 2439-2449.
    .. [6] Noughabi, H. A. (2015). Entropy Estimation Using Numerical Methods.
           Annals of Data Science, 2(2), 231-241.
           https://link.springer.com/article/10.1007/s40745-015-0045-9

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.stats import differential_entropy, norm

    Entropy of a standard normal distribution:

    >>> rng = np.random.default_rng()
    >>> values = rng.standard_normal(100)
    >>> differential_entropy(values)
    1.3407817436640392

    Compare with the true entropy:

    >>> float(norm.entropy())
    1.4189385332046727

    For several sample sizes between 5 and 1000, compare the accuracy of
    the ``'vasicek'``, ``'van es'``, and ``'ebrahimi'`` methods. Specifically,
    compare the root mean squared error (over 1000 trials) between the estimate
    and the true differential entropy of the distribution.

    >>> from scipy import stats
    >>> import matplotlib.pyplot as plt
    >>>
    >>>
    >>> def rmse(res, expected):
    ...     '''Root mean squared error'''
    ...     return np.sqrt(np.mean((res - expected)**2))
    >>>
    >>>
    >>> a, b = np.log10(5), np.log10(1000)
    >>> ns = np.round(np.logspace(a, b, 10)).astype(int)
    >>> reps = 1000  # number of repetitions for each sample size
    >>> expected = stats.expon.entropy()
    >>>
    >>> method_errors = {'vasicek': [], 'van es': [], 'ebrahimi': []}
    >>> for method in method_errors:
    ...     for n in ns:
    ...        rvs = stats.expon.rvs(size=(reps, n), random_state=rng)
    ...        res = stats.differential_entropy(rvs, method=method, axis=-1)
    ...        error = rmse(res, expected)
    ...        method_errors[method].append(error)
    >>>
    >>> for method, errors in method_errors.items():
    ...     plt.loglog(ns, errors, label=method)
    >>>
    >>> plt.legend()
    >>> plt.xlabel('sample size')
    >>> plt.ylabel('RMSE (1000 trials)')
    >>> plt.title('Entropy Estimator Error (Exponential Distribution)')

    T)force_floatingr+   r   rA   r   zWindow length (z7) must be positive and less than half the sample size (z).r   r)   r2   )vasicekvan escorreaebrahimirM   z`method` must be one of rM   
   rR   i  rT   rQ   r.   )r   r   moveaxisrB   r;   rD   rE   r3   sort_vasicek_entropy_van_es_entropy_correa_entropy_ebrahimi_entropylowersetr<   astypedtype)rH   r@   r%   r&   rN   r+   rI   sorted_datamethodsmessageress              r   r   r      so   j 
	 Bt;F[[r*FRA

499Q<##56M!%A%m_ -**+B0
 	

 DAIFGG''&r'*K*((,'	)G
 \\^FW,S\N;!!7F$YFF
'&/+}
<Ctxx~ 99S&,,''r   c                    | j                   dd |fz   }|j                  | dddf   |      }|j                  | dddf   |      }|j                  || |fd      S )z9Pad the data for computing the rolling window difference.Nr   .r   r2   )rB   broadcast_toconcat)Xmr+   rB   XlXrs         r   _pad_along_last_axisrk   w  si     GGCRLA4E	37U	+B	38e	,B99b!R[r9**r   c                    | j                   d   }t        | ||      } | dd|z  df   | ddd|z  f   z
  }|j                  |d|z  z  |z        }|j                  |d      S )z:Compute the Vasicek estimator as described in [6] Eq. 1.3.r   r.   .r   Nr2   )rB   rk   r<   mean)rg   rh   r+   rI   differenceslogss         r   rX   rX     st    	AQb)ACQK.1S)BF)^#44K66!QqS'K'(D774b7!!r   c                   | j                   d   }| d|df   | dd| f   z
  }d||z
  z  |j                  |j                  |dz   |z  |z        d      z  }|j                  ||dz   |j                  t        |             }||j                  d|z        z   t        j                  |      z   t        j                  |dz         z
  S )z1Compute the van Es estimator as described in [6].r   .Nr   r2   r_   device)rB   r6   r<   aranger_   r   r;   )rg   rh   r+   rI   
differenceterm1ks          r   rY   rY     s     	
A37aSqbSk)JqsGbffRVVQqS!Gj$89fCCE
		!QqSIaL	AA266!A#;!,txx!}<<r   c                   | j                   d   }t        | ||      } | dd|z  df   | ddd|z  f   z
  }|j                  d|dz   | j                  t	        |             }|j                  ||k  d|dz
  |z  z   d	      }|j                  |||z
  dz   k\  d||z
  |z  z   |      }|j                  ||z  ||z  z        }|j                  |d
      S )z3Compute the Ebrahimi estimator as described in [6].r   r.   .r   Nrm   r   rr   g       @r2   )rB   rk   rt   r_   r   wherer<   rn   )rg   rh   r+   rI   ro   icirp   s           r   r[   r[     s     	
AQb)ACQK.1S)BF)^#44K
		!QqS	!	=A	!q&!q1uai-	,B	!q1uqy.!q1uai-	4B66!k/R!V,-D774b7!!r   c                   | j                   d   }t        | ||      } |j                  d|dz   t        |             }|j                  | |dz   t        |             dddf   }||z   }||z   dz
  }|j	                  | d|f   dd	      }| d|f   |z
  }	|j                  |	|z  d
      }
||j                  |	dz  d
      z  }|j	                  |j                  |
|z        d
       S )z1Compute the Correa estimator as described in [6].r   r.   r   )rs   N.rm   Tr/   r2   r   )rB   rk   rt   r   rn   r6   r<   )rg   rh   r+   rI   rz   djjj0Xibarru   numdens               r   rZ   rZ     s     	
AQb)A
		!QqS1	.A	A2qs9Q<	0D	9B	BA	
QBGGAc2gJR$G7E37e#J
&&BR&
(C
BFF:q=rF*
*CGGBFF3s7O"G---r   )NNr   )r   )__doc__r;   numpyr4   scipyr   _axis_nan_policyr   scipy._lib._array_apir   r   r   r	   r
   r   __all__typing	ArrayLikefloatintnumberndarrayr   rJ   strr   rk   rX   rY   r[   rZ   r   r   r   <module>r      s      6M M ,
-  !24 .2!%J		## J		##d*J$,J J RZZ'	J JZ 1.?0 !%|(II|( :|( $,	|(
 |( |( YY|(	 
|(~+"=" .r   