
    bi$8                         d dl mZ d dlmZ d dlmZmZmZ d dl	m
c mZ d dlmZ d dlmZ ddlmZ 	 	 dddd	d
Zd Zd Zd Z	 	 ddZy)    )float_factorial)numpy)array_namespacexp_swapaxes	xp_deviceN)
convolve1d)
_polyutils   )
axis_slice)xpdevicec                   || k\  rt        d      t        | d      \  }}	||	dk(  r|dz
  }n|}d|cxk  r| k  st        d       t        d      |dvrt        d      |t        nt        |j	                  d            }||kD  r |j                  | |j                  |      }
|
S |j                  | | |z
  |j                  |      }|d	k(  r|j                  |      }|j                  |j                  |d
z   |j                  |      d      }||z  }|j                  |d
z   |j                  |      }t        j                  ||      j                  t        |      ||z  z        }t        j                  |||      \  }
}}}|
S )a	  Compute the coefficients for a 1-D Savitzky-Golay FIR filter.

    Parameters
    ----------
    window_length : int
        The length of the filter window (i.e., the number of coefficients).
    polyorder : int
        The order of the polynomial used to fit the samples.
        `polyorder` must be less than `window_length`.
    deriv : int, optional
        The order of the derivative to compute. This must be a
        nonnegative integer. The default is 0, which means to filter
        the data without differentiating.
    delta : float, optional
        The spacing of the samples to which the filter will be applied.
        This is only used if deriv > 0.
    pos : int or None, optional
        If pos is not None, it specifies evaluation position within the
        window. The default is the middle of the window.
    use : str, optional
        Either 'conv' or 'dot'. This argument chooses the order of the
        coefficients. The default is 'conv', which means that the
        coefficients are ordered to be used in a convolution. With
        use='dot', the order is reversed, so the filter is applied by
        dotting the coefficients with the data set.

    Returns
    -------
    coeffs : 1-D ndarray
        The filter coefficients.

    See Also
    --------
    savgol_filter

    Notes
    -----
    .. versionadded:: 0.14.0

    References
    ----------
    A. Savitzky, M. J. E. Golay, Smoothing and Differentiation of Data by
    Simplified Least Squares Procedures. Analytical Chemistry, 1964, 36 (8),
    pp 1627-1639.
    Jianwen Luo, Kui Ying, and Jing Bai. 2005. Savitzky-Golay smoothing and
    differentiation filter for even number data. Signal Process.
    85, 7 (July 2005), 1429-1434.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.signal import savgol_coeffs
    >>> savgol_coeffs(5, 2)
    array([-0.08571429,  0.34285714,  0.48571429,  0.34285714, -0.08571429])
    >>> savgol_coeffs(5, 2, deriv=1)
    array([ 2.00000000e-01,  1.00000000e-01,  2.07548111e-16, -1.00000000e-01,
           -2.00000000e-01])

    Note that use='dot' simply reverses the coefficients.

    >>> savgol_coeffs(5, 2, pos=3)
    array([ 0.25714286,  0.37142857,  0.34285714,  0.17142857, -0.14285714])
    >>> savgol_coeffs(5, 2, pos=3, use='dot')
    array([-0.14285714,  0.17142857,  0.34285714,  0.37142857,  0.25714286])
    >>> savgol_coeffs(4, 2, pos=3, deriv=1, use='dot')
    array([0.45,  -0.85,  -0.65,  1.05])

    `x` contains data from the parabola x = t**2, sampled at
    t = -1, 0, 1, 2, 3.  `c` holds the coefficients that will compute the
    derivative at the last position.  When dotted with `x` the result should
    be 6.

    >>> x = np.array([1, 0, 1, 4, 9])
    >>> c = savgol_coeffs(5, 2, pos=4, deriv=1, use='dot')
    >>> c.dot(x)
    6.0
    z*polyorder must be less than window_length.   r   g      ?z4pos must be nonnegative and less than window_length.)convdotz`use` must be 'conv' or 'dot'dtyper   r   r
   r
   r   )
ValueErrordivmod	np_compatr   emptyzerosfloat64arangeflipreshapexpxatsetr   _pu_lstsq)window_length	polyorderderivdeltaposuser   r   halflenremcoeffsxorderAy_s                   W/home/cdr/jupyterlab/.venv/lib/python3.12/site-packages/scipy/signal/_savitzky_golay.pysavgol_coeffsr4      s   x M!EFF-+LGS
{!8C-CC$}$ * + 	+ % * + 	+ /!899 jobhhqk&BBy-rzz&I 			3$+2::f	MA
f}GGAJJJ
		)a-rzz&	A7E 	
U
A 	Qbjj@A 	q%_U3u~FGA jjA"-OFAq!M    c          
         |dk(  r| }|S | j                   d   }||k  r|j                  | dddf         }|S |j                  | d| df   d      }t        |      D ]c  }|j	                  ||z
  dz
  ||z
  dz
  d| j
                  t        |             }||j                  |||z
  fd	| j                  dz
  z  z         z  }e |}|S )
aH  Differentiate polynomials represented with coefficients.

    p must be a 1-D or 2-D array.  In the 2-D case, each column gives
    the coefficients of a polynomial; the first row holds the coefficients
    associated with the highest power. m must be a nonnegative integer.
    (numpy.polyder doesn't handle the 2-D case.)
    r   Nr
   .T)copyr   r   )r
   )	shape
zeros_likeasarrayranger   r   r   r   ndim)pmr   resultndpkrngs           r3   _polyderrD      s     	Av M GGAJ6]]1RaRW:.F M Acrc3hKd3B1X FiiEAIq1uqy"AGGIaL    bjjq1uh!1D&DEE	F
 FMr5   c
           
         t        |       }
t        | |||      }|dk(  s|| j                   k(  r|}d}nt        ||d|
      }d}|
j	                  ||j
                  d   df      }t        j                  |
j                  d||z
  | j                  t        |             |||
      }|dkD  rt        |||
      }|
j                  ||z
  ||z
  |j                  t        |            }t        j                  ||
j	                  |d      |
      ||z  z  }t        |	j
                        }||   |d   c|d<   ||<   |
j	                  |||z
  g|d	d
       }|rt        |d||
      }t        d
      g|	j                  z  }t        ||      ||<   t        j                   |	t#        |            j%                  |      }	|	S )aE  
    Given an N-d array `x` and the specification of a slice of `x` from
    `window_start` to `window_stop` along `axis`, create an interpolating
    polynomial of each 1-D slice, and evaluate that polynomial in the slice
    from `interp_start` to `interp_stop`. Put the result into the
    corresponding slice of `y`.
    )startstopaxisr   FTr   r   r   r   r
   N)r   r   r<   r   r   r8   r#   polyfitr   r   r   rD   polyvallistslicer    r!   tupler"   )r.   window_startwindow_stopinterp_startinterp_stoprH   r&   r'   r(   r1   r   x_edgexx_edgeswappedpoly_coeffsivaluesshpy_slices                      r3   	_fit_edgerZ      s    
	B KdKFqyDQVVGOfdAr2jj7==#3R"89G ++
		{\)1 	 	
I"K qy{Eb9 			|#[<%?	+(> 	 	A [[bjjG&<DQVWF qww-CD	3q6CFCIZZ|!; Fc!"g FGFVQb1T{maff$G,4GDMq%.!%%f-AHr5   c                     |dz  }t        | d|d||||||
      }| j                  |   }t        | ||z
  |||z
  ||||||
      }|S )z
    Use polynomial interpolation of x at the low and high ends of the axis
    to fill in the halflen values in y.

    This function just calls _fit_edge twice, once for each end of the axis.
    r   r   )rZ   r8   )	r.   r%   r&   r'   r(   rH   r1   r+   r@   s	            r3   _fit_edges_polyfitr\      si     q G!Qq'4q	*A	A!Q&1w;4q	*A Hr5   c           
         |dvrt        d      t        |       }|j                  |       } | j                  |j                  k7  r5| j                  |j
                  k7  r|j                  | |j                        } t        |||||t        |             }	|dk(  r?|| j                  |   kD  rt        d      t        | |	|d      }
t        | ||||||
      }
|
S t        | |	|||      }
|
S )	a   Apply a Savitzky-Golay filter to an array.

    This is a 1-D filter. If `x`  has dimension greater than 1, `axis`
    determines the axis along which the filter is applied.

    Parameters
    ----------
    x : array_like
        The data to be filtered. If `x` is not a single or double precision
        floating point array, it will be converted to type ``numpy.float64``
        before filtering.
    window_length : int
        The length of the filter window (i.e., the number of coefficients).
        If `mode` is 'interp', `window_length` must be less than or equal
        to the size of `x`.
    polyorder : int
        The order of the polynomial used to fit the samples.
        `polyorder` must be less than `window_length`.
    deriv : int, optional
        The order of the derivative to compute. This must be a
        nonnegative integer. The default is 0, which means to filter
        the data without differentiating.
    delta : float, optional
        The spacing of the samples to which the filter will be applied.
        This is only used if deriv > 0. Default is 1.0.
    axis : int, optional
        The axis of the array `x` along which the filter is to be applied.
        Default is -1.
    mode : str, optional
        Must be 'mirror', 'constant', 'nearest', 'wrap' or 'interp'. This
        determines the type of extension to use for the padded signal to
        which the filter is applied.  When `mode` is 'constant', the padding
        value is given by `cval`.  See the Notes for more details on 'mirror',
        'constant', 'wrap', and 'nearest'.
        When the 'interp' mode is selected (the default), no extension
        is used.  Instead, a degree `polyorder` polynomial is fit to the
        last `window_length` values of the edges, and this polynomial is
        used to evaluate the last `window_length // 2` output values.
    cval : scalar, optional
        Value to fill past the edges of the input if `mode` is 'constant'.
        Default is 0.0.

    Returns
    -------
    y : ndarray, same shape as `x`
        The filtered data.

    See Also
    --------
    savgol_coeffs

    Notes
    -----
    Details on the `mode` options:

        'mirror':
            Repeats the values at the edges in reverse order. The value
            closest to the edge is not included.
        'nearest':
            The extension contains the nearest input value.
        'constant':
            The extension contains the value given by the `cval` argument.
        'wrap':
            The extension contains the values from the other end of the array.

    For example, if the input is [1, 2, 3, 4, 5, 6, 7, 8], and
    `window_length` is 7, the following shows the extended data for
    the various `mode` options (assuming `cval` is 0)::

        mode       |   Ext   |         Input          |   Ext
        -----------+---------+------------------------+---------
        'mirror'   | 4  3  2 | 1  2  3  4  5  6  7  8 | 7  6  5
        'nearest'  | 1  1  1 | 1  2  3  4  5  6  7  8 | 8  8  8
        'constant' | 0  0  0 | 1  2  3  4  5  6  7  8 | 0  0  0
        'wrap'     | 6  7  8 | 1  2  3  4  5  6  7  8 | 1  2  3

    .. versionadded:: 0.14.0

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.signal import savgol_filter
    >>> np.set_printoptions(precision=2)  # For compact display.
    >>> x = np.array([2, 2, 5, 2, 1, 0, 1, 4, 9])

    Filter with a window length of 5 and a degree 2 polynomial.  Use
    the defaults for all other parameters.

    >>> savgol_filter(x, 5, 2)
    array([1.66, 3.17, 3.54, 2.86, 0.66, 0.17, 1.  , 4.  , 9.  ])

    Note that the last five values in x are samples of a parabola, so
    when mode='interp' (the default) is used with polyorder=2, the last
    three values are unchanged. Compare that to, for example,
    `mode='nearest'`:

    >>> savgol_filter(x, 5, 2, mode='nearest')
    array([1.74, 3.03, 3.54, 2.86, 0.66, 0.17, 1.  , 4.6 , 7.97])

    )mirrorconstantnearestinterpwrapz@mode must be 'mirror', 'constant', 'nearest' 'wrap' or 'interp'.)r'   r(   r   r   ra   zOIf mode is 'interp', window_length must be less than or equal to the size of x.r_   )rH   mode)rH   rc   cval)r   r   r:   r   r   float32astyper4   r   r8   r   r\   )r.   r%   r&   r'   r(   rH   rc   rd   r   r-   r1   s              r3   savgol_filterrg      s    L FF / 0 	0 
	B


1Aww"**BJJ!6IIa$yUr)TU,F x1774=( ? @ @ q&t*=q-E5$PQR
 H q&t$TBHr5   )r         ?Nr   )r   rh   r   ra   g        )scipy._lib._utilr   scipy._lib.array_api_compatr   r   scipy._lib._array_apir   r   r   scipy._lib.array_api_extra_libarray_api_extrar    scipy.ndimager   scipy.signalr	   r#   _arraytoolsr   r4   rD   rZ   r\   rg    r5   r3   <module>rs      s[    , : I I ( ( $ * # EIM$(M`43n" ?B/2Br5   