# Copyright 2022 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
from functools import partial
from typing import Any

import numpy as np

from jax._src import api
from jax._src import dtypes
from jax._src import lax
from jax._src import numpy as jnp
from jax._src import random
from jax._src.numpy.util import check_arraylike, promote_dtypes_inexact
from jax._src.scipy import linalg, special
from jax._src.tree_util import register_pytree_node_class


@register_pytree_node_class
@dataclass(frozen=True, init=False)
class gaussian_kde:
  """Gaussian Kernel Density Estimator

  JAX implementation of :class:`scipy.stats.gaussian_kde`.

  Parameters:
    dataset: arraylike, real-valued. Data from which to estimate the distribution.
      If 1D, shape is (n_data,). If 2D, shape is (n_dimensions, n_data).
    bw_method: string, scalar, or callable. Either "scott", "silverman", a scalar
      value, or a callable function which takes ``self`` as a parameter.
    weights: arraylike, optional. Weights of the same shape as the dataset.
  """
  neff: Any
  dataset: Any
  weights: Any
  covariance: Any
  inv_cov: Any

  def __init__(self, dataset, bw_method=None, weights=None):
    check_arraylike("gaussian_kde", dataset)
    dataset = jnp.atleast_2d(dataset)
    if dtypes.issubdtype(lax.dtype(dataset), np.complexfloating):
      raise NotImplementedError("gaussian_kde does not support complex data")
    if not dataset.size > 1:
      raise ValueError("`dataset` input should have multiple elements.")

    d, n = dataset.shape
    if weights is not None:
      check_arraylike("gaussian_kde", weights)
      dataset, weights = promote_dtypes_inexact(dataset, weights)
      weights = jnp.atleast_1d(weights)
      weights /= jnp.sum(weights)
      if weights.ndim != 1:
        raise ValueError("`weights` input should be one-dimensional.")
      if len(weights) != n:
        raise ValueError("`weights` input should be of length n")
    else:
      dataset, = promote_dtypes_inexact(dataset)
      weights = jnp.full(n, 1.0 / n, dtype=dataset.dtype)

    self._setattr("dataset", dataset)
    self._setattr("weights", weights)
    neff = self._setattr("neff", 1 / jnp.sum(weights**2))

    bw_method = "scott" if bw_method is None else bw_method
    if bw_method == "scott":
      factor = jnp.power(neff, -1. / (d + 4))
    elif bw_method == "silverman":
      factor = jnp.power(neff * (d + 2) / 4.0, -1. / (d + 4))
    elif jnp.isscalar(bw_method) and not isinstance(bw_method, str):
      factor = bw_method
    elif callable(bw_method):
      factor = bw_method(self)
    else:
      raise ValueError(
          "`bw_method` should be 'scott', 'silverman', a scalar, or a callable."
      )

    data_covariance = jnp.atleast_2d(
        jnp.cov(dataset, rowvar=1, bias=False, aweights=weights))
    data_inv_cov = jnp.linalg.inv(data_covariance)
    covariance = data_covariance * factor**2
    inv_cov = data_inv_cov / factor**2
    self._setattr("covariance", covariance)
    self._setattr("inv_cov", inv_cov)

  def _setattr(self, name, value):
    # Frozen dataclasses don't support setting attributes so we have to
    # overload that operation here as they do in the dataclass implementation
    object.__setattr__(self, name, value)
    return value

  def tree_flatten(self):
    return ((self.neff, self.dataset, self.weights, self.covariance,
             self.inv_cov), None)

  @classmethod
  def tree_unflatten(cls, aux_data, children):
    del aux_data
    kde = cls.__new__(cls)
    kde._setattr("neff", children[0])
    kde._setattr("dataset", children[1])
    kde._setattr("weights", children[2])
    kde._setattr("covariance", children[3])
    kde._setattr("inv_cov", children[4])
    return kde

  @property
  def d(self):
    return self.dataset.shape[0]

  @property
  def n(self):
    return self.dataset.shape[1]

  def evaluate(self, points):
    """Evaluate the Gaussian KDE on the given points."""
    check_arraylike("evaluate", points)
    points = self._reshape_points(points)
    result = _gaussian_kernel_eval(False, self.dataset.T, self.weights[:, None],
                                   points.T, self.inv_cov)
    return result[:, 0]

  def __call__(self, points):
    return self.evaluate(points)

  def integrate_gaussian(self, mean, cov):
    """Integrate the distribution weighted by a Gaussian."""
    mean = jnp.atleast_1d(jnp.squeeze(mean))
    cov = jnp.atleast_2d(cov)

    if mean.shape != (self.d,):
      raise ValueError(f"mean does not have dimension {self.d}")
    if cov.shape != (self.d, self.d):
      raise ValueError(f"covariance does not have dimension {self.d}")

    chol = linalg.cho_factor(self.covariance + cov)
    norm = jnp.sqrt(2 * np.pi)**self.d * jnp.prod(jnp.diag(chol[0]))
    norm = 1.0 / norm
    return _gaussian_kernel_convolve(chol, norm, self.dataset, self.weights,
                                     mean)

  def integrate_box_1d(self, low, high):
    """Integrate the distribution over the given limits."""
    if self.d != 1:
      raise ValueError("integrate_box_1d() only handles 1D pdfs")
    if np.ndim(low) != 0 or np.ndim(high) != 0:
      raise ValueError(
          "the limits of integration in integrate_box_1d must be scalars")
    sigma = jnp.squeeze(jnp.sqrt(self.covariance))
    low = jnp.squeeze((low - self.dataset) / sigma)
    high = jnp.squeeze((high - self.dataset) / sigma)
    return jnp.sum(self.weights * (special.ndtr(high) - special.ndtr(low)))

  def integrate_kde(self, other):
    """Integrate the product of two Gaussian KDE distributions."""
    if other.d != self.d:
      raise ValueError("KDEs are not the same dimensionality")

    chol = linalg.cho_factor(self.covariance + other.covariance)
    norm = jnp.sqrt(2 * np.pi)**self.d * jnp.prod(jnp.diag(chol[0]))
    norm = 1.0 / norm

    sm, lg = (self, other) if self.n < other.n else (other, self)
    result = api.vmap(partial(_gaussian_kernel_convolve, chol, norm, lg.dataset,
                              lg.weights),
                      in_axes=1)(sm.dataset)
    return jnp.sum(result * sm.weights)

  def resample(self, key, shape=()):
    r"""Randomly sample a dataset from the estimated pdf

    Args:
      key: a PRNG key used as the random key.
      shape: optional, a tuple of nonnegative integers specifying the result
        batch shape; that is, the prefix of the result shape excluding the last
        axis.

    Returns:
      The resampled dataset as an array with shape `(d,) + shape`.
    """
    ind_key, eps_key = random.split(key)
    ind = random.choice(ind_key, self.n, shape=shape, p=self.weights)
    eps = random.multivariate_normal(eps_key,
                                     jnp.zeros(self.d, self.covariance.dtype),
                                     self.covariance,
                                     shape=shape,
                                     dtype=self.dataset.dtype).T
    return self.dataset[:, ind] + eps

  def pdf(self, x):
    """Probability density function"""
    return self.evaluate(x)

  def logpdf(self, x):
    """Log probability density function"""
    check_arraylike("logpdf", x)
    x = self._reshape_points(x)
    result = _gaussian_kernel_eval(True, self.dataset.T, self.weights[:, None],
                                   x.T, self.inv_cov)
    return result[:, 0]

  def integrate_box(self, low_bounds, high_bounds, maxpts=None):
    """This method is not implemented in the JAX interface."""
    del low_bounds, high_bounds, maxpts
    raise NotImplementedError(
        "only 1D box integrations are supported; use `integrate_box_1d`")

  def set_bandwidth(self, bw_method=None):
    """This method is not implemented in the JAX interface."""
    del bw_method
    raise NotImplementedError(
        "dynamically changing the bandwidth method is not supported")

  def _reshape_points(self, points):
    if dtypes.issubdtype(lax.dtype(points), np.complexfloating):
      raise NotImplementedError(
          "gaussian_kde does not support complex coordinates")
    points = jnp.atleast_2d(points)
    d, m = points.shape
    if d != self.d:
      if d == 1 and m == self.d:
        points = jnp.reshape(points, (self.d, 1))
      else:
        raise ValueError(
            "points have dimension {}, dataset has dimension {}".format(
                d, self.d))
    return points


def _gaussian_kernel_convolve(chol, norm, target, weights, mean):
  diff = target - mean[:, None]
  alpha = linalg.cho_solve(chol, diff)
  arg = 0.5 * jnp.sum(diff * alpha, axis=0)
  return norm * jnp.sum(jnp.exp(-arg) * weights)


@api.jit(static_argnums=0)
def _gaussian_kernel_eval(in_log, points, values, xi, precision):
  points, values, xi, precision = promote_dtypes_inexact(
      points, values, xi, precision)
  d = points.shape[1]

  if xi.shape[1] != d:
    raise ValueError("points and xi must have same trailing dim")
  if precision.shape != (d, d):
    raise ValueError("precision matrix must match data dims")

  whitening = linalg.cholesky(precision, lower=True)
  points = jnp.dot(points, whitening)
  xi = jnp.dot(xi, whitening)
  log_norm = jnp.sum(jnp.log(
      jnp.diag(whitening))) - 0.5 * d * jnp.log(2 * np.pi)

  def kernel(x_test, x_train, y_train):
    arg = log_norm - 0.5 * jnp.sum(jnp.square(x_train - x_test))
    if in_log:
      return jnp.log(y_train) + arg
    else:
      return y_train * jnp.exp(arg)

  reduce = special.logsumexp if in_log else jnp.sum
  reduced_kernel = lambda x: reduce(api.vmap(kernel, in_axes=(None, 0, 0))
                                    (x, points, values),
                                    axis=0)
  mapped_kernel = api.vmap(reduced_kernel)

  return mapped_kernel(xi)
