
    uki	                    d    d dl mZ d dlmZ d dlmZ d dlmZmZ  ed      	 	 d		 	 	 d
d       Z	y)    )annotations)jit)	lax_numpy)Array	ArrayLike)axis)static_argnamesNc                2    t        j                  | |||      S )aw  
  Integrate along the given axis using the composite trapezoidal rule.

  JAX implementation of :func:`scipy.integrate.trapezoid`

  The trapezoidal rule approximates the integral under a curve by summing the
  areas of trapezoids formed between adjacent data points.

  Args:
    y: array of data to integrate.
    x: optional array of sample points corresponding to the ``y`` values. If not
       provided, ``x`` defaults to equally spaced with spacing given by ``dx``.
    dx: The spacing between sample points when `x` is None (default: 1.0).
    axis: The axis along which to integrate (default: -1)

  Returns:
    The definite integral approximated by the trapezoidal rule.

  See also:
    :func:`jax.numpy.trapezoid`: NumPy-style API for trapezoidal integration

  Examples:
    Integrate over a regular grid, with spacing 1.0:

    >>> y = jnp.array([1, 2, 3, 2, 3, 2, 1])
    >>> jax.scipy.integrate.trapezoid(y, dx=1.0)
    Array(13., dtype=float32)

    Integrate over an irregular grid:

    >>> x = jnp.array([0, 2, 5, 7, 10, 15, 20])
    >>> jax.scipy.integrate.trapezoid(y, x)
    Array(43., dtype=float32)

    Approximate :math:`\int_0^{2\pi} \sin^2(x)dx`, which equals :math:`\pi`:

    >>> x = jnp.linspace(0, 2 * jnp.pi, 1000)
    >>> y = jnp.sin(x) ** 2
    >>> result = jax.scipy.integrate.trapezoid(y, x)
    >>> jnp.allclose(result, jnp.pi)
    Array(True, dtype=bool)
  )r   	trapezoid)yxdxr   s       S/home/cdr/jupyterlab/.venv/lib/python3.12/site-packages/jax/_src/scipy/integrate.pyr   r      s    Z 
		Q2t	,,    )Ng      ?)
r   r   r   zArrayLike | Noner   r   r   intreturnr   )

__future__r   jax._src.apir   jax._src.numpyr   jax._src.typingr   r   r    r   r   <module>r      sB    #  $ , YHK,-,-!&,-  ,-r   