Ë
    ¢Ùbi  ã                   ó\   — d dl mZ ddlmZ e G d„ de«      «       Ze G d„ de«      «       Zy)	é    )Ú	dataclassé   )Ú
BaseOutputc                   ó   — e Zd ZU dZded<   y)ÚAutoencoderKLOutputa@  
    Output of AutoencoderKL encoding method.

    Args:
        latent_dist (`DiagonalGaussianDistribution`):
            Encoded outputs of `Encoder` represented as the mean and logvar of `DiagonalGaussianDistribution`.
            `DiagonalGaussianDistribution` allows for sampling latents from the distribution.
    ÚDiagonalGaussianDistributionÚlatent_distN©Ú__name__Ú
__module__Ú__qualname__Ú__doc__Ú__annotations__© ó    ú\/home/cdr/jupyterlab/.venv/lib/python3.12/site-packages/diffusers/models/modeling_outputs.pyr   r      s   … ñð 0Ô/r   r   c                   ó   — e Zd ZU dZded<   y)ÚTransformer2DModelOutputa¤  
    The output of [`Transformer2DModel`].

    Args:
        sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
            The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
            distributions for the unnoised latent pixels.
    ztorch.TensorÚsampleNr
   r   r   r   r   r      s   … ñð Ôr   r   N)Údataclassesr   Úutilsr   r   r   r   r   r   ú<module>r      sA   ðÝ !å ð ô
0˜*ó 
0ó ð
0ð ô
˜zó 
ó ñ
r   