
    bi                     L    d dl mZmZ d dlmZ d dlmZ e G d de             Zy)    )	dataclassfield)Optional)TrainingArgumentsc                   L    e Zd ZU dZ edddi      Zeed<    edddi      Ze	e
   ed	<    ed
ddi      Ze
ed<    edddi      Ze	e   ed<    ed
ddi      Ze
ed<    edddi      Ze	e   ed<    edddi      Ze	e   ed<    edddi      Ze
ed<    fdZ xZS )RewardConfiga?  
    Configuration class for the [`RewardTrainer`].

    This class includes only the parameters that are specific to Reward training. For a full list of training
    arguments, please refer to the [`~transformers.TrainingArguments`] documentation. Note that default values in this
    class may differ from those in [`~transformers.TrainingArguments`].

    Using [`~transformers.HfArgumentParser`] we can turn this class into
    [argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the
    command line.

    Parameters:
        max_length (`int` or `None`, *optional*, defaults to `1024`):
            Maximum length of the sequences (prompt + completion) in the batch, filters out entries that exceed the
            limit. This argument is required if you want to use the default data collator.
        disable_dropout (`bool`, *optional*, defaults to `True`):
            Whether to disable dropout in the model.
        dataset_num_proc (`int`, *optional*, defaults to `None`):
            Number of processes to use for processing the dataset.
        center_rewards_coefficient (`float`, *optional*, defaults to `None`):
            Coefficient to incentivize the reward model to output mean-zero rewards (proposed by
            https://huggingface.co/papers/2312.09244, Eq. 2). Recommended value: `0.01`.
        remove_unused_columns (`bool`, *optional*, defaults to `False`):
            Whether to remove the columns that are not used by the model's forward pass. Can be `True` only if the
            dataset is pretokenized.
    
   helpzLog every X updates steps. Should be an integer or a float in range `[0,1)`. If smaller than 1, will be interpreted as ratio of total training steps.)defaultmetadatalogging_stepsNzWhether to use bf16 (mixed) precision instead of 32-bit. Requires Ampere or higher NVIDIA architecture or Intel XPU or using CPU (use_cpu) or Ascend NPU. If not set, it defaults to `True` if `fp16` is not set.bf16TzWhether or not to average tokens across devices. If enabled, will use all_reduce to synchronize num_tokens_in_batch for precise loss calculation. Reference: https://github.com/huggingface/transformers/issues/34242 average_tokens_across_devicesi   zMaximum length of the sequences (prompt + completion) in the batch, filters out entries that exceed the limit. This argument is required if you want to use the default data collator.
max_lengthz<Whether to disable dropout in the model and reference model.disable_dropoutz6Number of processes to use for processing the dataset.dataset_num_proczCoefficient to incentivize the reward model to output mean-zero rewards (proposed by https://huggingface.co/papers/2312.09244, Eq. 2). Recommended value: `0.01`.center_rewards_coefficientFzWhether to remove the columns that are not used by the model's forward pass. Can be `True` only if the dataset is pretokenized.remove_unused_columnsc                 v    | j                   | j                   n| j                   | _         t        |           y )N)r   fp16super__post_init__)self	__class__s    T/home/cdr/jupyterlab/.venv/lib/python3.12/site-packages/trl/trainer/reward_config.pyr   zRewardConfig.__post_init__h   s*    '+yy'8Odii	    )__name__
__module____qualname____doc__r   r   float__annotations__r   r   boolr   r   intr   r   r   r   r   __classcell__)r   s   @r   r   r      s:   8 ! D
M5  ! !
D(4.  +0 E
+!4  !& h
!J  "XYOT  ',RS'hsm  38 [
3  #( .
#4    r   r   N)dataclassesr   r   typingr   transformersr   r    r   r   <module>r*      s/    )  * U $ U  U r   