
    biI                     v   d dl Z d dlZd dlmZ d dlmZ d dlmZ d dl	m
Z d dlmZmZmZmZmZmZmZ g dZ G d d	e      Zd
 Z G d de      Z G d de      Z G d de      Z G d de      Z G d de      Z G d de      Ze j:                  e   j>                  Z eD ]  Z! ee e!         e e!   _"         y)    N)inf)array_api_extra)special)_ufuncs)ContinuousDistributionDiscreteDistribution_RealInterval_IntegerInterval_RealParameter_Parameterization_combine_docs)NormalLogisticUniformBinomialc                       e Zd ZdZ ee ef      Z edef      Z ee ef      Z e	dded      Z
 e	dd	ed
      Z e	ded      Z ee
e      gZeZd ej"                  dej$                  z        z  Z ej(                  dej$                  z        dz  Zd% fd	Zddd fd
Zd Zd Zd Zd Zd Zd Zd Zd Zd Z d Z!d Z"d Z#d  Z$d! Z%d" Z&ddge&_'        d# Z(d$ Z) xZ*S )&r   a  Normal distribution with prescribed mean and standard deviation.

    The probability density function of the normal distribution is:

    .. math::

        f(x) = \frac{1}{\sigma \sqrt{2 \pi}} \exp {
            \left( -\frac{1}{2}\left( \frac{x - \mu}{\sigma} \right)^2 \right)}

    	endpointsr   muz\mu)   symboldomaintypicalsigmaz\sigma)      ?g      ?xr   r   r      c                 P    ||t         |   t              S t         |   |       S N)super__new__StandardNormal)clsr   r   kwargs	__class__s       Y/home/cdr/jupyterlab/.venv/lib/python3.12/site-packages/scipy/stats/_new_distributions.pyr$   zNormal.__new__.   s*    :%-7?>22ws##                  ?r   r   c                *    t        |   d||d| y )Nr-    r#   __init__)selfr   r   r'   r(   s       r)   r1   zNormal.__init__3   s    6Be6v6r*   c                f    t         j                  | ||z
  |z        t        j                  |      z
  S r"   )r%   _logpdf_formulanplogr2   r   r   r   r'   s        r)   r4   zNormal._logpdf_formula6   s*    --dQVUNCbffUmSSr*   c                @    t         j                  | ||z
  |z        |z  S r"   )r%   _pdf_formular7   s        r)   r9   zNormal._pdf_formula9   s"    **4!b&%@5HHr*   c                :    t         j                  | ||z
  |z        S r"   )r%   _logcdf_formular7   s        r)   r;   zNormal._logcdf_formula<   s    --dQVUNCCr*   c                :    t         j                  | ||z
  |z        S r"   )r%   _cdf_formular7   s        r)   r=   zNormal._cdf_formula?   s    **4!b&%@@r*   c                :    t         j                  | ||z
  |z        S r"   )r%   _logccdf_formular7   s        r)   r?   zNormal._logccdf_formulaB   s    ..ta"fe^DDr*   c                :    t         j                  | ||z
  |z        S r"   )r%   _ccdf_formular7   s        r)   rA   zNormal._ccdf_formulaE   s    ++D1r65.AAr*   c                :    t         j                  | |      |z  |z   S r"   )r%   _icdf_formular7   s        r)   rC   zNormal._icdf_formulaH   s    ++D!4u<rAAr*   c                :    t         j                  | |      |z  |z   S r"   )r%   _ilogcdf_formular7   s        r)   rE   zNormal._ilogcdf_formulaK   s    ..tQ7%?"DDr*   c                :    t         j                  | |      |z  |z   S r"   )r%   _iccdf_formular7   s        r)   rG   zNormal._iccdf_formulaN   s    ,,T15=BBr*   c                :    t         j                  | |      |z  |z   S r"   )r%   _ilogccdf_formular7   s        r)   rI   zNormal._ilogccdf_formulaQ   s    //a85@2EEr*   c                j    t         j                  |       t        j                  t	        |            z   S r"   )r%   _entropy_formular5   r6   absr2   r   r   r'   s       r)   rK   zNormal._entropy_formulaT   s%    ..t4rvvc%j7IIIr*   c                @   t         j                  |       }t        j                  d      5  t        j                  t        j                  t        |            dz         }d d d        t        j                  t        j                  |      d      S # 1 sw Y   4xY w)Nignoredividey                r   axis)	r%   _logentropy_formular5   errstater6   rL   r   	logsumexpbroadcast_arrays)r2   r   r   r'   lH0llss         r)   rT   zNormal._logentropy_formulaW   sw    006[[) 	0 &&E
+B./C	0   !4!4S#!>QGG		0 	0s   5BBc                    |S r"   r/   rM   s       r)   _median_formulazNormal._median_formula_       	r*   c                    |S r"   r/   rM   s       r)   _mode_formulazNormal._mode_formulab   r\   r*   c                F    |dk(  rt        j                  |      S |dk(  r|S y )Nr   r   )r5   	ones_liker2   orderr   r   r'   s        r)   _moment_raw_formulazNormal._moment_raw_formulae   s'    A:<<##aZIr*   c                    |dk(  rt        j                  |      S |dz  rt        j                  |      S ||z  t        j                  t        |      dz
  d      z  S )Nr   r    r   T)exact)r5   r`   
zeros_liker   
factorial2intra   s        r)   _moment_central_formulazNormal._moment_central_formulan   sT    A:<<##QY==$$ %<'"4"4SZ!^4"PPPr*   c                0    |j                  |||      d   S )N)locscalesizer/   normal)r2   
full_shaperngr   r   r'   s         r)   _sample_formulazNormal._sample_formulaw   s    zzbJz?CCr*   )NN)+__name__
__module____qualname____doc__r	   r   
_mu_domain_sigma_domain
_x_supportr   	_mu_param_sigma_param_x_paramr   _parameterizations	_variabler5   sqrtpi_normalizationr6   _log_normalizationr$   r1   r4   r9   r;   r=   r?   rA   rC   rE   rG   rI   rK   rT   r[   r^   rc   ordersri   rr   __classcell__r(   s   @r)   r   r      s>   	 3$5J!QH5M3$5JtVJ'.0I!')M*46Lc*gFH+I|DEIwrwwqw''N"%%*$
  r 7TIDAEBBECFJH #$QQDr*   r   c                 \    t        j                  | |t        j                  dz  z   gd      S )Ny              ?r   rR   )r   rV   r5   r   )log_plog_qs     r)   	_log_diffr   {   s&    eU2558^41==r*   c                      e Zd ZdZ ee ef      Z eded      ZeZ	g Z
d ej                  dej                  z        z  Z ej                  dej                  z        dz  Z ej"                  d      Z ej"                  d	      Zd
 Zd Zd Zd Zd Zd Zd Zd Zd Zd Zd Zd Zd Z d Z!d Z"d Z#d Z$d Z%d Z&y)r%   zStandard normal distribution.

    The probability density function of the standard normal distribution is:

    .. math::

        f(x) = \frac{1}{\sqrt{2 \pi}} \exp \left( -\frac{1}{2} x^2 \right)

    r   r   )   r   r   r    r+   r,   c                 0    t        j                  | fi | y r"   )r   r1   r2   r'   s     r)   r1   zStandardNormal.__init__   s    ''77r*   c                 .    | j                   |dz  dz  z    S Nr    )r   r2   r   r'   s      r)   r4   zStandardNormal._logpdf_formula   s    ((1a46122r*   c                 T    | j                   t        j                  |dz   dz        z  S r   )r   r5   expr   s      r)   r9   zStandardNormal._pdf_formula   s%    ""RVVQTE!G_44r*   c                 ,    t        j                  |      S r"   r   log_ndtrr   s      r)   r;   zStandardNormal._logcdf_formula   s    ""r*   c                 ,    t        j                  |      S r"   r   ndtrr   s      r)   r=   zStandardNormal._cdf_formula   s    ||Ar*   c                 .    t        j                  |       S r"   r   r   s      r)   r?   zStandardNormal._logccdf_formula   s    ##r*   c                 .    t        j                  |       S r"   r   r   s      r)   rA   zStandardNormal._ccdf_formula   s    ||QBr*   c                 ,    t        j                  |      S r"   r   ndtrir   s      r)   rC   zStandardNormal._icdf_formula       }}Qr*   c                 ,    t        j                  |      S r"   r   	ndtri_expr   s      r)   rE   zStandardNormal._ilogcdf_formula         ##r*   c                 .    t        j                  |       S r"   r   r   s      r)   rG   zStandardNormal._iccdf_formula       a   r*   c                 .    t        j                  |       S r"   r   r   s      r)   rI   z StandardNormal._ilogccdf_formula   s    !!!$$$r*   c                 Z    dt        j                  dt         j                  z        z   dz  S Nr   r    )r5   r6   r   r   s     r)   rK   zStandardNormal._entropy_formula   s"    BFF1RUU7O#Q&&r*   c                     t        j                  t        j                  dt         j                  z              t        j                  d      z
  S r   )r5   log1pr6   r   r   s     r)   rT   z"StandardNormal._logentropy_formula   s.    xxqw(266!944r*   c                      yNr   r/   r   s     r)   r[   zStandardNormal._median_formula       r*   c                      yr   r/   r   s     r)   r^   zStandardNormal._mode_formula   r   r*   c                 8    ddddddd}|j                  |d       S )Nr   r      )r   r   r    r      r   )get)r2   rb   r'   raw_momentss       r)   rc   z"StandardNormal._moment_raw_formula   s%    aA!:ud++r*   c                 (     | j                   |fi |S r"   rc   r2   rb   r'   s      r)   ri   z&StandardNormal._moment_central_formula       't''888r*   c                 (     | j                   |fi |S r"   r   r   s      r)   _moment_standardized_formulaz+StandardNormal._moment_standardized_formula   r   r*   c                 ,    |j                  |      d   S Nrm   r/   rn   r2   rp   rq   r'   s       r)   rr   zStandardNormal._sample_formula   s    zzzz*2..r*   N)'rs   rt   ru   rv   r	   r   ry   r   r|   r~   r}   r5   r   r   r   r6   r   float64r   r   r1   r4   r9   r;   r=   r?   rA   rC   rE   rG   rI   rK   rT   r[   r^   rc   ri   r   rr   r/   r*   r)   r%   r%      s     3$5Jc*gFHIwrwwqw''N"%%*	BBBJJrNE835#$  $!%'5,99/r*   r%   c                       e Zd ZdZ ee ef      Z eded      xZZ	dZ
ej                   ej                  d      z  Zd Zd	 Zd
 Zd Zd Zd Zd Zd Zd Zd Zd Zd Zd Zd Zd Zd Zy)r   zStandard logistic distribution.

    The probability density function of the standard logistic distribution is:

    .. math::

        f(x) = \frac{1}{\left( e^{x / 2} + e^{-x / 2} \right)^2}

    r   r   )i	   r   r/   r   c                     t        j                  |       }|dt        j                  t        j                  |            z  z
  S r   )r5   rL   r   r   r   )r2   r   r'   ys       r)   r4   zLogistic._logpdf_formula   s2    VVAYJ1w}}RVVAY////r*   c                 >    dt        j                  |dz        z  dz  S )Nr   r    )r5   coshr   s      r)   r9   zLogistic._pdf_formula   s    RWWQU^#a''r*   c                 ,    t        j                  |      S r"   r   	log_expitr   s      r)   r;   zLogistic._logcdf_formula   r   r*   c                 ,    t        j                  |      S r"   r   expitr   s      r)   r=   zLogistic._cdf_formula   r   r*   c                 .    t        j                  |       S r"   r   r   s      r)   r?   zLogistic._logccdf_formula   s      !$$r*   c                 .    t        j                  |       S r"   r   r   s      r)   rA   zLogistic._ccdf_formula   s    }}aR  r*   c                 ,    t        j                  |      S r"   r   logitr   s      r)   rC   zLogistic._icdf_formula   r   r*   c                 .    t        j                  |       S r"   r   r   s      r)   rG   zLogistic._iccdf_formula   r   r*   c                      y)Ng       @r/   r   s     r)   rK   zLogistic._entropy_formula   s    r*   c                 ,    t        j                  d      S r   r5   r6   r   s     r)   rT   zLogistic._logentropy_formula   s    vvayr*   c                      yr   r/   r   s     r)   r[   zLogistic._median_formula   r   r*   c                      yr   r/   r   s     r)   r^   zLogistic._mode_formula   r   r*   c           	          t        |      }|dz  ryt        j                  |z  t        d|z  dz
  t	        t        j                  |      d         z        z  S )Nr    r+   r   )rh   r5   r   rL   floatr   	bernoulli)r2   rb   r'   ns       r)   rc   zLogistic._moment_raw_formula  sO    Jq5uuax#q!tax51B1B11Eb1I+JJKKKr*   c                 (     | j                   |fi |S r"   r   r   s      r)   ri   z Logistic._moment_central_formula	  r   r*   c                 H     | j                   |fi || j                  |z  z  S r"   )rc   _scaler   s      r)   r   z%Logistic._moment_standardized_formula  s(    't''884;;;MMMr*   c                 ,    |j                  |      d   S r   )logisticr   s       r)   rr   zLogistic._sample_formula  s    |||,R00r*   N)rs   rt   ru   rv   r	   r   ry   r   r~   r|   r}   r5   r   r   r   r4   r9   r;   r=   r?   rA   rC   rG   rK   rT   r[   r^   rc   ri   r   rr   r/   r*   r)   r   r      s     3$5J)#j'RRIUUWRWWQZF0($ %! !L9N1r*   r   c                       e Zd ZdZ edef      Z edef      Z ee ef      Z edef      Z	 edd      Z
 eded	
      Z eded
      Z edded      Z edde	d      Z ede
d
      Zej#                  e       e	j#                  e       e
j#                  ee        eee       eee      gZeZddddd fd
ZddZd Zd Z xZS )_LogUniforma  Log-uniform distribution.

    The probability density function of the log-uniform distribution is:

    .. math::

        f(x; a, b) = \frac{1}
                          {x (\log(b) - \log(a))}

    If :math:`\log(X)` is a random variable that follows a uniform distribution
    between :math:`\log(a)` and :math:`\log(b)`, then :math:`X` is log-uniformly
    distributed with shape parameters :math:`a` and :math:`b`.

    r   r   alog_ar   bTTr   	inclusivegMbP?g?r   r   g?g     @@z\log(a))gr   log_bz\log(b))皙?r   r   Nr   r   r   r   c                .    t        |   d||||d| y )Nr   r/   r0   )r2   r   r   r   r   r'   r(   s         r)   r1   z_LogUniform.__init__:  s    F1eFvFr*   c                 
   |t        j                  |      n|}|t        j                  |      n|}|t        j                  |      n|}|t        j                  |      n|}|j                  t	        ||||             |S )Nr   )r5   r   r6   updatedict)r2   r   r   r   r   r'   s         r)   _process_parametersz_LogUniform._process_parameters=  sj    YBFF5MAYBFF5MA"]q	"]q	dQ!5>?r*   c                    ||z
  |z  dz  S )Nr   r/   )r2   r   r   r   r'   s        r)   r9   z_LogUniform._pdf_formulaH  s    !B&&r*   c           	          |dk(  r| j                   S | j                   ||z
  z  |z  }t        j                  t        j                  t	        ||z  ||z                    }||z  S r   )_oner5   realr   r   )r2   rb   r   r   r'   t1t2s          r)   rc   z_LogUniform._moment_raw_formulaN  sY    A:99YY%%-(50WWRVVIeemUU]CDEBwr*   )NNNN)rs   rt   ru   rv   r	   r   	_a_domain	_b_domain_log_a_domain_log_b_domainry   r   _a_param_b_param_log_a_param_log_b_paramr|   define_parametersr   r}   r~   r1   r   r9   rc   r   r   s   @r)   r   r     s    C1Ic
3I!cT3K8M!WcN;M|LJc)[IHc)ZHH!'*)6
LL!'*)6JLc*jIH)##L1  84+L,G+Hh?AI DD G'r*   r   c                   x    e Zd ZdZ ee ef      Z edef      Z edd      Z e	ded      Z
 e	d	ed
      Z e	ded      Zej                  e
       ej                  e
e        ee
e      gZeZddd fd
ZddZd Zd Zd Zd Zd Zd Zd Zd Zd Zd Zd Zd Zd Zdge_         d Z! xZ"S )r   zUniform distribution.

    The probability density function of the uniform distribution is:

    .. math::

        f(x; a, b) = \frac{1}
                          {b - a}

    r   r   r   r   r   r   r   r   r   r   Nc                *    t        |   d||d| y )Nr   r/   r0   )r2   r   r   r'   r(   s       r)   r1   zUniform.__init__p      ,1,V,r*   c                 J    ||z
  }|j                  t        |||             |S )N)r   r   ab)r   r   r2   r   r   r  r'   s        r)   r   zUniform._process_parameterss  s%    UdQ!+,r*   c                    t        j                  t        j                  |      t         j                  t        j                  |             S r"   )r5   whereisnannanr6   r2   r   r  r'   s       r)   r4   zUniform._logpdf_formulax  s+    xxRVVbffRj[99r*   c                x    t        j                  t        j                  |      t         j                  d|z        S Nr   )r5   r	  r
  r  r  s       r)   r9   zUniform._pdf_formula{  s%    xxRVVQrT22r*   c                    t        j                  d      5  t        j                  ||z
        t        j                  |      z
  cd d d        S # 1 sw Y   y xY wNrO   rP   r5   rU   r6   r2   r   r   r  r'   s        r)   r;   zUniform._logcdf_formula~  ?    [[) 	.66!a%=266":-	. 	. 	.   .AAc                    ||z
  |z  S r"   r/   r  s        r)   r=   zUniform._cdf_formula      A|r*   c                    t        j                  d      5  t        j                  ||z
        t        j                  |      z
  cd d d        S # 1 sw Y   y xY wr  r  r2   r   r   r  r'   s        r)   r?   zUniform._logccdf_formula  r  r  c                    ||z
  |z  S r"   r/   r  s        r)   rA   zUniform._ccdf_formula  r  r*   c                    |||z  z   S r"   r/   )r2   pr   r  r'   s        r)   rC   zUniform._icdf_formula      2a4xr*   c                    |||z  z
  S r"   r/   )r2   r  r   r  r'   s        r)   rG   zUniform._iccdf_formula  r  r*   c                ,    t        j                  |      S r"   r   )r2   r  r'   s      r)   rK   zUniform._entropy_formula  s    vvbzr*   c                    |d|z  z   S Nr   r/   r  s        r)   r^   zUniform._mode_formula      3r6zr*   c                    |d|z  z   S r   r/   r  s        r)   r[   zUniform._median_formula  r!  r*   c                 .    |dz   }||z  ||z  z
  ||z  z  S r  r/   )r2   rb   r   r   r  r'   np1s          r)   rc   zUniform._moment_raw_formula  s&    ai3CC"H--r*   c                      |dk(  r|dz  dz  S d S )Nr       r/   )r2   rb   r  r'   s       r)   ri   zUniform._moment_central_formula  s     A:r1uRx/4/r*   r    c                     	 |j                  |||      d   S # t        $ r |j                  dd|      |z  |z   cY S w xY w)Nr   r/   r   r   )uniformOverflowError)r2   rp   rq   r   r   r  r'   s          r)   rr   zUniform._sample_formula  sO    	=;;q!*;5b99 	=;;q!*;5b81<<	=s    #??)NNN)#rs   rt   ru   rv   r	   r   r   r   ry   r   r   r   r|   r  r   r}   r~   r1   r   r4   r9   r;   r=   r?   rA   rC   rG   rK   r^   r[   rc   ri   r   rr   r   r   s   @r)   r   r   V  s    	 #s4Ic
3I|LJc)[IHc)ZHHc*jIH)  84+Hh?@I D -
:3...0 '(S"=r*   r   c                       e Zd Z edef      Z edefd      Z eded      Z eded      Z	 e
e      gZe	Zd	 Zy
)_Gammar   r   FFr   r   )r   
   r   r   c                l    ||dz
  z  t        j                  |       z  t        j                  |      z  S r  )r5   r   r   gamma)r2   r   r   r'   s       r)   r9   z_Gamma._pdf_formula  s-    QU|bffaRj(7==+;;;r*   N)rs   rt   ru   r	   r   r   ry   r   r   r|   r   r}   r~   r9   r/   r*   r)   r+  r+    sT    C1I!S^LJc)YGHc*iHH+H56I<r*   r+  c                   "    e Zd ZdZ edefd      Z edd      Z edd      Z	 e
ded	
      Z e
ded
      Z e
de	d
      Z eee      gZeZ fdZd Zd Zd Zd Zd Zd Zd Zd Zd Zd Zddge_        d Zg de_         xZS )r   zBinomial distribution with prescribed success probability and number of trials

    The probability density function of the binomial distribution is:

    .. math::

        f(x) = {n \choose x} p^x (1 - p)^{n-x}

    r   r,  r   )r   r   )r   r   r   r   )r-     r   r  )g      ?g      ?r   )r   r-  c                *    t        |   d||d| y )Nr   r  r/   r0   )r2   r   r  r'   r(   s       r)   r1   zBinomial.__init__  r  r*   c                0    t        j                  |||      S r"   )scu
_binom_pmfr2   r   r   r  r'   s        r)   _pmf_formulazBinomial._pmf_formula      ~~aA&&r*   c                   t        j                  |dz         t        j                  |dz         t        j                  ||z
  dz         z   z
  }|t        j                  ||      z   t        j                  ||z
  |       z   S r  )r   gammalnxlogyxlog1py)r2   r   r   r  r'   combilns         r)   _logpmf_formulazBinomial._logpmf_formula  so    
 OOAaC GOOAaC$87??1Q3q5;Q$QR 	 q!,,wqsQB/GGGr*   c                0    t        j                  |||      S r"   )r5  
_binom_cdfr7  s        r)   r=   zBinomial._cdf_formula  r9  r*   c                j    | j                  d||      }t        j                  ||k  |||fd d       S )Nr   r3  c                  L    t        j                  t        j                  |        S r"   )r5   r6   r5  rA  argss    r)   <lambda>z*Binomial._logcdf_formula.<locals>.<lambda>  s    "&&!67 r*   c                  N    t        j                  t        j                  |         S r"   )r5   r   r5  	_binom_sfrD  s    r)   rF  z*Binomial._logcdf_formula.<locals>.<lambda>  s    "((CMM4$8#89 r*   rC   xpxapply_wherer2   r   r   r  r'   medians         r)   r;   zBinomial._logcdf_formula  s@     ##C1#2q6zAq!979
 	
r*   c                0    t        j                  |||      S r"   )r5  rH  r7  s        r)   rA   zBinomial._ccdf_formula  s    }}Q1%%r*   c                j    | j                  d||      }t        j                  ||k  |||fd d       S )Nr   r3  c                  N    t        j                  t        j                  |         S r"   )r5   r   r5  rA  rD  s    r)   rF  z+Binomial._logccdf_formula.<locals>.<lambda>  s    "((CNND$9#9: r*   c                  L    t        j                  t        j                  |        S r"   )r5   r6   r5  rH  rD  s    r)   rF  z+Binomial._logccdf_formula.<locals>.<lambda>  s    "&&!56 r*   rI  rL  s         r)   r?   zBinomial._logccdf_formula  s>    ##C1#2q6zAq!9:6
 	
r*   c                0    t        j                  |||      S r"   )r5  
_binom_ppfr7  s        r)   rC   zBinomial._icdf_formula  r9  r*   c                0    t        j                  |||      S r"   )r5  
_binom_isfr7  s        r)   rG   zBinomial._iccdf_formula  r9  r*   c                |    t        j                  |dz   |z        }t        j                  |dk(  |dz
  |      }|d   S )Nr   r/   )r5   floorr	  )r2   r   r  r'   modes        r)   r^   zBinomial._mode_formula  s;    xx1a xxQq$/Bxr*   c                D    |dk(  r||z  S |dk(  r||z  d|z
  ||z  z   z  S y r   r/   r2   rb   r   r  r'   s        r)   rc   zBinomial._moment_raw_formula   s7    A:Q3JA:Q3A!$$r*   r   r    c                    |dk(  rt        j                  |      S |dk(  r||z  d|z
  z  S |dk(  r||z  d|z
  z  dd|z  z
  z  S |dk(  r ||z  d|z
  z  dd|z  dz
  |z  d|z
  z  z   z  S y )Nr   r    r   r      )r5   rf   rZ  s        r)   ri   z Binomial._moment_central_formula	  s    A:==##A:Q3A;A:Q3A;AaC((A:Q3A;QqS1WaKQ$7 788r*   )r   r    r   r   )rs   rt   ru   rv   r
   r   	_n_domainr	   	_p_domainry   r   _n_param_p_paramr|   r   r}   r~   r1   r8  r?  r=   r;   rA   r?   rC   rG   r^   rc   r   ri   r   r   s   @r)   r   r     s     !As8~NI.II!HMJc)XFHc)\JHc*gFH+Hh?@I-'H'
&
'' #$Q
 &2""r*   r   )#sysnumpyr5   r   
scipy._libr   rJ  scipyr   scipy.specialr   r5  (scipy.stats._distribution_infrastructurer   r   r	   r
   r   r   r   __all__r   r   r%   r   r   r   r+  r   modulesrs   __dict___module	dist_namerv   r/   r*   r)   <module>rl     s    
   -  (6 6 6 8hD# hDV>K/V K/\C1% C1N?( ?DR=$ R=j<# <Z2# Z2@ ++h

(
( CI!.wy/A!BGICr*   