
    bi                     L   d dl Z d dlZd dlZd dlZd dlmZmZmZ d dlm	Z	m
Z
mZmZmZmZ d dlZd dlZd dlmZ d dlmZmZ d dlmZ ddlmZmZ d d	l mZ d d
lmZ d dlmZ g dZ  G d de!      Z"d Z#d Z$d Z%d Z& e' ed      jQ                          ed      jQ                               Z)d Z*	 	 	 	 d<dZ+ e*e+       	 	 d=dZ, G d d      Z- G d d      Z. G d d      Z/d Z0 G d  d!e.      Z1 G d" d#      Z2 ed$      jQ                         e)d%<    G d& d'e1      Z3 G d( d)e3      Z4 G d* d+e1      Z5 G d, d-e1      Z6 G d. d/e1      Z7 G d0 d1e1      Z8 G d2 d3e.      Z9d4 Z: e:d5e3      Z; e:d6e4      Z< e:d7e5      Z= e:d8e7      Z> e:d9e6      Z? e:d:e8      Z@ e:d;e9      ZAy)>    N)asarraydotvdot)normsolveinvqrsvdLinAlgError)get_blas_funcs)copy_if_needed_dedent_for_py313)getfullargspec_no_self   )scalar_search_wolfe1scalar_search_armijo)	signature)get_close_matches)GenericAlias)broyden1broyden2andersonlinearmixingdiagbroydenexcitingmixingnewton_krylovBroydenFirstKrylovJacobianInverseJacobianNoConvergencec                       e Zd ZdZy)r    z\Exception raised when nonlinear solver fails to converge within the specified
    `maxiter`.N)__name__
__module____qualname____doc__     Q/home/cdr/jupyterlab/.venv/lib/python3.12/site-packages/scipy/optimize/_nonlin.pyr    r    !   s
    r'   r    c                 H    t        j                  |       j                         S N)npabsolutemaxxs    r(   maxnormr0   '   s    ;;q>r'   c                     t        |       } t        j                  | j                  t        j                        st        | t        j
                        S | S )z:Return `x` as an array, of either floats or complex floatsdtype)r   r+   
issubdtyper3   inexactfloat64r.   s    r(   _as_inexactr7   +   s7    
A=="**-q

++Hr'   c                     t        j                  | t        j                  |            } t        |d| j                        } ||       S )z;Return ndarray `x` as same array subclass and shape as `x0`__array_wrap__)r+   reshapeshapegetattrr9   )r/   x0wraps      r(   _array_liker?   3   s8    


1bhhrl#A2')9)9:D7Nr'   c                     t        j                  |       j                         s#t        j                  t         j                        S t        |       S r*   )r+   isfiniteallarrayinfr   )vs    r(   
_safe_normrF   :   s2    ;;q>xx7Nr'   z
    F : function(x) -> f
        Function whose root to find; should take and return an array-like
        object.
    xin : array_like
        Initial guess for the solution
    a  
    iter : int, optional
        Number of iterations to make. If omitted (default), make as many
        as required to meet tolerances.
    verbose : bool, optional
        Print status to stdout on every iteration.
    maxiter : int, optional
        Maximum number of iterations to make. If more are needed to
        meet convergence, `NoConvergence` is raised.
    f_tol : float, optional
        Absolute tolerance (in max-norm) for the residual.
        If omitted, default is 6e-6.
    f_rtol : float, optional
        Relative tolerance for the residual. If omitted, not used.
    x_tol : float, optional
        Absolute minimum step size, as determined from the Jacobian
        approximation. If the step size is smaller than this, optimization
        is terminated as successful. If omitted, not used.
    x_rtol : float, optional
        Relative minimum step size. If omitted, not used.
    tol_norm : function(vector) -> scalar, optional
        Norm to use in convergence check. Default is the maximum norm.
    line_search : {None, 'armijo' (default), 'wolfe'}, optional
        Which type of a line search to use to determine the step size in the
        direction given by the Jacobian approximation. Defaults to 'armijo'.
    callback : function, optional
        Optional callback function. It is called on every iteration as
        ``callback(x, f)`` where `x` is the current solution and `f`
        the corresponding residual.

    Returns
    -------
    sol : ndarray
        An array (of similar array type as `x0`) containing the final solution.

    Raises
    ------
    NoConvergence
        When a solution was not found.

    )params_basicparams_extrac                 N    | j                   r| j                   t        z  | _         y y r*   )r%   
_doc_parts)objs    r(   _set_docrL   x   s    
{{kkJ. r'   c           
          |
t         n|
}
t        ||||	||
      }t               fd}j                         }t	        j
                  |t        j                        } ||      }t        |      }t        |      }|j                  |j                         ||       |||dz   }nd|j                  dz   z  }|du rd}n|du rd}|d	vrt        d
      d}d}d}d}t        |      D ]H  }|j                  |||      }|r nIt        |||z        }|j!                  ||       }t        |      dk(  rt        d      |rt#        |||||      \  }}}}nd}||z   } ||      }t        |      }|j%                  |j                         |       |r	 |||       ||dz  z  |dz  z  }||dz  z  |k  rt        ||      }nt        |t'        |||dz  z              }|}|st(        j*                  j-                  | d |
|      dd|dd       t(        j*                  j/                          K |rt1        t3        |            d}|r)|j4                  |||dk(  ddd|   d}t3        |      |fS t3        |      S )a  
    Find a root of a function, in a way suitable for large-scale problems.

    Parameters
    ----------
    %(params_basic)s
    jacobian : Jacobian
        A Jacobian approximation: `Jacobian` object or something that
        `asjacobian` can transform to one. Alternatively, a string specifying
        which of the builtin Jacobian approximations to use:

            krylov, broyden1, broyden2, anderson
            diagbroyden, linearmixing, excitingmixing

    %(params_extra)s
    full_output : bool
        If true, returns a dictionary `info` containing convergence
        information.
    raise_exception : bool
        If True, a `NoConvergence` exception is raise if no solution is found.

    See Also
    --------
    asjacobian, Jacobian

    Notes
    -----
    This algorithm implements the inexact Newton method, with
    backtracking or full line searches. Several Jacobian
    approximations are available, including Krylov and Quasi-Newton
    methods.

    References
    ----------
    .. [KIM] C. T. Kelley, "Iterative Methods for Linear and Nonlinear
       Equations". Society for Industrial and Applied Mathematics. (1995)
       https://archive.siam.org/books/kelley/fr16/

    N)f_tolf_rtolx_tolx_rtoliterr   c                 V    t         t        |                   j                         S r*   )r7   r?   flatten)zFr=   s    r(   funcznonlin_solve.<locals>.func   s#    1[B/0199;;r'   r   d   TarmijoF)NrY   wolfezInvalid line searchg?gH.?g?gMbP?)tolr   z[Jacobian inversion yielded zero vector. This indicates a bug in the Jacobian approximation.      ?   z:  |F(x)| = gz; step 
z0A solution was found at the specified tolerance.z:The maximum number of iterations allowed has been reached.)r   r]   )nitfunstatussuccessmessage)r0   TerminationConditionr7   rT   r+   	full_likerD   r   
asjacobiansetupcopysize
ValueErrorrangecheckminr   _nonlin_line_searchupdater-   sysstdoutwriteflushr    r?   	iteration) rV   r=   jacobianrR   verbosemaxiterrN   rO   rP   rQ   tol_normline_searchcallbackfull_outputraise_exception	conditionrW   r/   dxFxFx_normgammaeta_maxeta_tresholdetanrb   r[   sFx_norm_neweta_Ainfos    ``                              r(   nonlin_solver   }   s   Z #*wH$5+0*.X?I 
RB<


A	a	 B	aB2hG(#HNN1668R&QhG166!8nGd		33.// EGL
C7^ .Q+ #s7{#nnRSn))8q= . / /
 $7aR8C%E!Aq"k ABAaBr(K"%QO Q&!336>L(gu%Cgs5%Q,78C JJs,x|A.>gaU"MNJJS.V Ar 233F ** !Q; , 3 %	&		 1b!4''1b!!r'   c                 l    dg|gt        |      dz  gt              t              z  d fd	fd}|dk(  rt        |d   d|      \  }}	}
n|dk(  rt        d   d    |	      \  }}	d
}|z  z   |d   k(  rd   }n        }t        |      }|||fS )Nr   r]   c                     | 	d   k(  rd   S 
| z  z   } |      }t        |      dz  }|r| 	d<   |d<   |d<   |S )Nr   r]   )rF   )r   storextrE   pr   rW   tmp_Fxtmp_phitmp_sr/   s        r(   phiz _nonlin_line_search.<locals>.phi  s_    a=1:2XHqM1E!HGAJF1Ir'   c                 ^    t        |       z   dz   z  } | |z   d       |       z
  |z  S )Nr   F)r   )abs)r   dsr   rdiffs_norms     r(   derphiz#_nonlin_line_search.<locals>.derphi%  s9    !fvo!U*AbD&Q/255r'   rZ   {Gz?)xtolaminrY   )r   r\   )T)r   r   r   )rW   r/   r   r   search_typer   sminr   r   phi1phi0r   r   r   r   r   r   s   `` ` `      @@@@@r(   ro   ro     s    CETFBx{mG!WtBxF
 
6 g,S&'!*26TC4		 &sGAJ,024 	y 	AbDAE!H}AY!W2hGaWr'   c                   *    e Zd ZdZdddddefdZd Zy)re   z
    Termination condition for an iteration. It is terminated if

    - |F| < f_rtol*|F_0|, AND
    - |F| < f_tol

    AND

    - |dx| < x_rtol*|x|, AND
    - |dx| < x_tol

    Nc                 D   |0t        j                  t         j                        j                  dz  }|t         j                  }|t         j                  }|t         j                  }|| _        || _        || _        || _        || _	        || _
        d | _        d| _        y )NgUUUUUU?r   )r+   finfor6   epsrD   rP   rQ   rN   rO   r   rR   f0_normru   )selfrN   rO   rP   rQ   rR   r   s          r(   __init__zTerminationCondition.__init__L  s     =HHRZZ(,,6E>VVF=FFE>VVF

		r'   c                    | xj                   dz  c_         | j                  |      }| j                  |      }| j                  |      }| j                  || _        |dk(  ry| j                  d| j                   | j                  kD  z  S t	        || j
                  k  xr || j                  z  | j                  k  xr# || j                  k  xr || j                  z  |k        S )Nr   r   r]   )	ru   r   r   rR   intrN   rO   rP   rQ   )r   fr/   r   f_normx_normdx_norms          r(   rm   zTerminationCondition.checkd  s    !11))B-<<!DLQ;99 233 Fdjj( ;t{{*dll:;4::- :#DKK/69< 	<r'   )r"   r#   r$   r%   r0   r   rm   r&   r'   r(   re   re   ?  s!     "$d40<r'   re   c                   @    e Zd ZdZ ee      Zd Zd ZddZ	d Z
d Zy)	Jacobiana  
    Common interface for Jacobians or Jacobian approximations.

    The optional methods come useful when implementing trust region
    etc., algorithms that often require evaluating transposes of the
    Jacobian.

    Methods
    -------
    solve
        Returns J^-1 * v
    update
        Updates Jacobian to point `x` (where the function has residual `Fx`)

    matvec : optional
        Returns J * v
    rmatvec : optional
        Returns A^H * v
    rsolve : optional
        Returns A^-H * v
    matmat : optional
        Returns A * V, where V is a dense matrix with dimensions (N,K).
    todense : optional
        Form the dense Jacobian matrix. Necessary for dense trust region
        algorithms, and useful for testing.

    Attributes
    ----------
    shape
        Matrix dimensions (M, N)
    dtype
        Data type of the matrix.
    func : callable, optional
        Function the Jacobian corresponds to

    c                     g d}|j                         D ]*  \  }}||vrt        d|       |t        | |||          , t        | d      rdd}y y )N)	r   rp   matvecrmatvecrsolvematmattodenser;   r3   zUnknown keyword argument r   c                 B    |t        d|       | j                         S )Nz`dtype` must be None, was )rk   r   )r   r3   ri   s      r(   	__array__z$Jacobian.__init__.<locals>.__array__  s'    $$'A%%IJJ||~%r'   NN)itemsrk   setattrhasattr)r   kwnamesnamevaluer   s         r(   r   zJacobian.__init__  si    888: 	.KD%5  #<TF!CDD dBtH-		. 4#& $r'   c                     t        |       S r*   )r   r   s    r(   aspreconditionerzJacobian.aspreconditioner  s    t$$r'   c                     t         r*   NotImplementedErrorr   rE   r[   s      r(   r   zJacobian.solve      !!r'   c                      y r*   r&   r   r/   rV   s      r(   rp   zJacobian.update      r'   c                     || _         |j                  |j                  f| _        |j                  | _        | j                  j
                  t        j
                  u r| j                  ||       y y r*   )rW   rj   r;   r3   	__class__rh   r   rp   r   r/   rV   rW   s       r(   rh   zJacobian.setup  sQ    	ffaff%
WW
>>8>>1KK1 2r'   Nr   )r"   r#   r$   r%   classmethodr   __class_getitem__r   r   r   rp   rh   r&   r'   r(   r   r     s.    #L $L1& %"r'   r   c                   F    e Zd ZdZ ee      Zd Zed        Z	ed        Z
y)r   a  
    A simple wrapper that inverts the Jacobian using the `solve` method.

    .. legacy:: class

        See the newer, more consistent interfaces in :mod:`scipy.optimize`.

    Parameters
    ----------
    jacobian : Jacobian
        The Jacobian to invert.

    Attributes
    ----------
    shape
        Matrix dimensions (M, N)
    dtype
        Data type of the matrix.

    c                     || _         |j                  | _        |j                  | _        t	        |d      r|j
                  | _        t	        |d      r|j                  | _        y y )Nrh   r   )rv   r   r   rp   r   rh   r   r   )r   rv   s     r(   r   zInverseJacobian.__init__  sN     nnoo8W%!DJ8X&#??DL 'r'   c                 .    | j                   j                  S r*   )rv   r;   r   s    r(   r;   zInverseJacobian.shape      }}"""r'   c                 .    | j                   j                  S r*   )rv   r3   r   s    r(   r3   zInverseJacobian.dtype  r   r'   N)r"   r#   r$   r%   r   r   r   r   propertyr;   r3   r&   r'   r(   r   r     sA    , $L1+ # # # #r'   r   c                 0    t         j                  j                  j                  t	         t
              r S t        j                         rt         t
              r         S t	         t        j                        r j                  dkD  rt        d      t        j                  t        j                                 j                  d    j                  d   k7  rt        d      t         fd fdd fd	d fd		 j                    j                  
      S t         j                  j#                         r_ j                  d    j                  d   k7  rt        d      t         fd fdd fd	d fd	 j                    j                  
      S t%         d      r{t%         d      rot%         d      rct        t'         d      t'         d       j(                  t'         d      t'         d      t'         d       j                    j                        S t+               r G  fddt
              } |       S t	         t,              r6 t/        t0        t2        t4        t6        t8        t:        t<                         S t?        d      )zE
    Convert given object to one suitable for use as a Jacobian.
    r]   zarray must have rank <= 2r   r   zarray must be squarec                     t        |       S r*   )r   rE   Js    r(   <lambda>zasjacobian.<locals>.<lambda>  s    Q r'   c                 L    t        j                         j                  |       S r*   )r   conjTr   s    r(   r   zasjacobian.<locals>.<lambda>  s    #affhjj!*< r'   c                     t        |       S r*   )r   rE   r[   r   s     r(   r   zasjacobian.<locals>.<lambda>  s    uQ{ r'   c                 L    t        j                         j                  |       S r*   )r   r   r   r   s     r(   r   zasjacobian.<locals>.<lambda>  s    affhjj!0D r'   )r   r   r   r   r3   r;   zmatrix must be squarec                     | z  S r*   r&   r   s    r(   r   zasjacobian.<locals>.<lambda>  s    Q r'   c                 >    j                         j                  | z  S r*   r   r   r   s    r(   r   zasjacobian.<locals>.<lambda>  s    !&&(**q. r'   c                      |       S r*   r&   rE   r[   r   spsolves     r(   r   zasjacobian.<locals>.<lambda>  s    wq!} r'   c                 F     j                         j                  |       S r*   r   r   s     r(   r   zasjacobian.<locals>.<lambda>  s    

A0F r'   r;   r3   r   r   r   r   rp   rh   )r   r   r   r   rp   rh   r3   r;   c                   D    e Zd Zd Zd fd	Z fdZd fd	Z fdZy)asjacobian.<locals>.Jacc                     || _         y r*   r.   r   s      r(   rp   zasjacobian.<locals>.Jac.update  s	    r'   c                      | j                         }t        |t        j                        rt	        ||      S t
        j                  j                  |      r	 ||      S t        d      NzUnknown matrix type)	r/   
isinstancer+   ndarrayr   scipysparseissparserk   r   rE   r[   mr   r   s       r(   r   zasjacobian.<locals>.Jac.solve!  sT    dffIa, A;&\\**1-"1a=($%:;;r'   c                      | j                         }t        |t        j                        rt	        ||      S t
        j                  j                  |      r||z  S t        d      r   )	r/   r   r+   r   r   r   r   r   rk   r   rE   r   r   s      r(   r   zasjacobian.<locals>.Jac.matvec*  sQ    dffIa,q!9$\\**1-q5L$%:;;r'   c                 :    | j                         }t        |t        j                        r$t	        |j                         j                  |      S t        j                  j                  |      r! |j                         j                  |      S t        d      r   )r/   r   r+   r   r   r   r   r   r   r   rk   r   s       r(   r   zasjacobian.<locals>.Jac.rsolve3  sj    dffIa, Q//\\**1-"1668::q11$%:;;r'   c                 2    | j                         }t        |t        j                        r$t	        |j                         j                  |      S t        j                  j                  |      r|j                         j                  |z  S t        d      r   )r/   r   r+   r   r   r   r   r   r   r   rk   r   s      r(   r   zasjacobian.<locals>.Jac.rmatvec<  sg    dffIa,qvvxzz1--\\**1-668::>)$%:;;r'   Nr   )r"   r#   r$   rp   r   r   r   r   )r   r   s   r(   Jacr     s    <<<<r'   r   )r   r   r   r   r   r   krylovz#Cannot convert object to a Jacobianr   ) r   r   linalgr   r   r   inspectisclass
issubclassr+   r   ndimrk   
atleast_2dr   r;   r3   r   r   r<   r   callablestrdictr   BroydenSecondAndersonDiagBroydenLinearMixingExcitingMixingr   	TypeError)r   r   r   s   ` @r(   rg   rg     s    ll!!))G!X		
1h 7s
	Arzz	"66A:899MM"**Q-(771:#3442 <:DggQWW	6 	6
 
		q	!771:#455 8<FggQWW	6 	6
 
G	G!4G9Lwq(3 '9 5gg&q(3&q(3%a1gggg' 	' 
!&	<( &	<N u	As	.t\*% +!-#1)+ ,-. 0 	0 =>>r'   c                   .    e Zd Z ee      Zd Zd Zd Zy)GenericBroydenc                     t         j                  | |||       || _        || _        t	        | d      rC| j
                  6t        |      }|r!dt        t        |      d      z  |z  | _        y d| _        y y y )Nalpha      ?r   r\   )r   rh   last_flast_xr   r  r   r-   )r   r=   f0rW   normf0s        r(   rh   zGenericBroyden.setupY  sn    tRT*4!djj&8 "XF T"Xq!11F:
 
 '9!r'   c                     t         r*   r   r   r/   r   r   dfr   df_norms          r(   _updatezGenericBroyden._updateg  r   r'   c           
          || j                   z
  }|| j                  z
  }| j                  ||||t        |      t        |             || _         || _        y r*   )r  r  r  r   )r   r/   r   r  r   s        r(   rp   zGenericBroyden.updatej  sH    __Q2r48T"X6r'   N)	r"   r#   r$   r   r   r   rh   r  rp   r&   r'   r(   r  r  U  s    #L1!"r'   r  c                       e Zd ZdZ ee      Zd Zed        Z	ed        Z
d Zd ZddZddZd	 ZddZd Zd Zd ZddZy
)LowRankMatrixz
    A matrix represented as

    .. math:: \alpha I + \sum_{n=0}^{n=M} c_n d_n^\dagger

    However, if the rank of the matrix reaches the dimension of the vectors,
    full matrix representation will be used thereon.

    c                 X    || _         g | _        g | _        || _        || _        d | _        y r*   )r  csr   r   r3   	collapsed)r   r  r   r3   s       r(   r   zLowRankMatrix.__init__  s,    

r'   c                     t        g d|d d | gz         \  }}}|| z  }t        ||      D ]#  \  }}	 ||	|       }
 ||||j                  |
      }% |S )N)axpyscaldotcr   )r   ziprj   )rE   r  r  r   r   r!  r"  wcdas              r(   _matveczLowRankMatrix._matvec  sm    )*B*,Ra&A3,8dDAIBK 	&DAqQ
AQ1661%A	& r'   c           	      J   t        |      dk(  r| |z  S t        ddg|dd | gz         \  }}|d   }|t        j                  t        |      |j                        z  }t        |      D ].  \  }}	t        |      D ]  \  }
}|||
fxx    ||	|      z  cc<    0 t        j                  t        |      |j                        }t        |      D ]  \  }
}	 ||	|       ||
<    ||z  }t        ||      }| |z  }t        ||      D ]  \  }} ||||j                  |       } |S )Evaluate w = M^-1 vr   r   r"  Nr   r2   )
lenr   r+   identityr3   	enumeratezerosr   r#  rj   )rE   r  r  r   r   r"  c0Air&  jr%  qr$  qcs                  r(   _solvezLowRankMatrix._solve  s:    r7a<U7N $VV$4b!fslC
dUBKKBrxx88bM 	%DAq!" %1!A#$q!*$%	% HHSWBHH-bM 	DAq1:AaD		U
!QKeGQZ 	(EArQ166B3'A	( r'   c                     | j                    t        j                  | j                   |      S t        j	                  || j
                  | j                  | j                        S )zEvaluate w = M v)r  r+   r   r  r(  r  r  r   r   rE   s     r(   r   zLowRankMatrix.matvec  sD    >>%66$..!,,$$Q

DGGTWWEEr'   c                    | j                   8t        j                  | j                   j                  j	                         |      S t
        j                  |t        j                  | j                        | j                  | j                        S )zEvaluate w = M^H v)
r  r+   r   r   r   r  r(  r  r   r  r7  s     r(   r   zLowRankMatrix.rmatvec  s\    >>%66$..**//1155$$Q

(;TWWdggNNr'   c                     | j                   t        | j                   |      S t        j                  || j                  | j
                  | j                        S )r*  )r  r   r  r5  r  r  r   r   s      r(   r   zLowRankMatrix.solve  s@    >>%++##Atzz477DGGDDr'   c                    | j                   .t        | j                   j                  j                         |      S t        j                  |t        j                  | j                        | j                  | j                        S )zEvaluate w = M^-H v)
r  r   r   r   r  r5  r+   r  r   r  r   s      r(   r   zLowRankMatrix.rsolve  sX    >>%))..0!44##Arwwtzz':DGGTWWMMr'   c                 X   | j                   5| xj                   |d d d f   |d d d f   j                         z  z  c_         y | j                  j                  |       | j                  j                  |       t        | j                        |j                  kD  r| j                          y y r*   )r  r   r  appendr   r+  rj   collapse)r   r%  r&  s      r(   r<  zLowRankMatrix.append  s{    >>%NNa$i!DF)..*:::Nqqtww<!&& MMO !r'   Nc                    |t        j                  d| dd       |t        j                  d| dd       | j                  | j                  S | j                  t	        j
                  | j                  | j                        z  }t        | j                  | j                        D ])  \  }}||d d d f   |d d d f   j                         z  z  }+ |S )NzJLowRankMatrix is scipy-internal code, `dtype` should only be None but was z (not handled)   )
stacklevelzILowRankMatrix is scipy-internal code, `copy` should only be None but was r2   )warningswarnr  r  r+   r,  r   r3   r#  r  r   r   )r   r3   ri   Gmr%  r&  s         r(   r   zLowRankMatrix.__array__  s    MM 99>~O%&( MM 99=nN%&( >>%>>!ZZDFF$**==) 	-DAq!AdF)Ad1fINN,,,B	-	r'   c                 n    t        j                  | t              | _        d| _        d| _        d| _        y)z0Collapse the low-rank matrix to a full-rank one.)ri   N)r+   rC   r   r  r  r   r  r   s    r(   r=  zLowRankMatrix.collapse  s)    $^<
r'   c                     | j                   y|dkD  sJ t        | j                        |kD  r| j                  dd= | j                  dd= yy)zH
        Reduce the rank of the matrix by dropping all vectors.
        Nr   r  r+  r  r   r   ranks     r(   restart_reducezLowRankMatrix.restart_reduce  sG     >>%axxtww<$

 r'   c                     | j                   y|dkD  sJ t        | j                        |kD  r4| j                  d= | j                  d= t        | j                        |kD  r3yy)zK
        Reduce the rank of the matrix by dropping oldest vectors.
        Nr   rF  rG  s     r(   simple_reducezLowRankMatrix.simple_reduce  sT     >>%axx$''lT!

 $''lT!r'   c                    | j                   y|}||}n|dz
  }| j                  r"t        |t        | j                  d               }t	        dt        ||dz
              }t        | j                        }||k  ryt        j                  | j                        j                  }t        j                  | j                        j                  }t        |d      \  }}t        ||j                  j                               }t        |d      \  }	}
}t        |t        |            }t        ||j                  j                               }t        |      D ]J  }|dd|f   j                         | j                  |<   |dd|f   j                         | j                  |<   L | j                  |d= | j                  |d= y)	a  
        Reduce the rank of the matrix by retaining some SVD components.

        This corresponds to the "Broyden Rank Reduction Inverse"
        algorithm described in [1]_.

        Note that the SVD decomposition can be done by solving only a
        problem whose size is the effective rank of this matrix, which
        is viable even for large problems.

        Parameters
        ----------
        max_rank : int
            Maximum rank of this matrix after reduction.
        to_retain : int, optional
            Number of SVD components to retain when reduction is done
            (ie. rank > max_rank). Default is ``max_rank - 2``.

        References
        ----------
        .. [1] B.A. van der Rotten, PhD thesis,
           "A limited memory Broyden method to solve high-dimensional
           systems of nonlinear equations". Mathematisch Instituut,
           Universiteit Leiden, The Netherlands (2003).

           https://web.archive.org/web/20161022015821/http://www.math.leidenuniv.nl/scripties/Rotten.pdf

        Nr]   r   r   economic)modeF)full_matrices)r  r  rn   r+  r-   r+   rC   r   r   r	   r   r   r
   r   rl   ri   )r   max_rank	to_retainr   r3  r   CDRUSWHks                r(   
svd_reducezLowRankMatrix.svd_reduce  sh   : >>% AAA77As4771:'A3q!A#;Lq5HHTWWHHTWW!*%113388:q.1b3r7O24499;q 	'A1Q3DGGAJ1Q3DGGAJ	' GGABKGGABKr'   r   r   r*   )r"   r#   r$   r%   r   r   r   r   staticmethodr(  r5  r   r   r   r   r<  r   r=  rI  rK  rY  r&   r'   r(   r  r  r  sw     $L1    6FOEN	"		?r'   r  a  
    alpha : float, optional
        Initial guess for the Jacobian is ``(-1/alpha)``.
    reduction_method : str or tuple, optional
        Method used in ensuring that the rank of the Broyden matrix
        stays low. Can either be a string giving the name of the method,
        or a tuple of the form ``(method, param1, param2, ...)``
        that gives the name of the method and values for additional parameters.

        Methods available:

        - ``restart``: drop all matrix columns. Has no extra parameters.
        - ``simple``: drop oldest matrix column. Has no extra parameters.
        - ``svd``: keep only the most significant SVD components.
          Takes an extra parameter, ``to_retain``, which determines the
          number of SVD components to retain when rank reduction is done.
          Default is ``max_rank - 2``.

    max_rank : int, optional
        Maximum rank for the Broyden matrix.
        Default is infinity (i.e., no rank reduction).
    broyden_paramsc                   F    e Zd ZdZddZd Zd ZddZd ZddZ	d	 Z
d
 Zy)r   al  
    Find a root of a function, using Broyden's first Jacobian approximation.

    This method is also known as "Broyden's good method".

    Parameters
    ----------
    %(params_basic)s
    %(broyden_params)s
    %(params_extra)s

    See Also
    --------
    root : Interface to root finding algorithms for multivariate
           functions. See ``method='broyden1'`` in particular.

    Notes
    -----
    This algorithm implements the inverse Jacobian Quasi-Newton update

    .. math:: H_+ = H + (dx - H df) dx^\dagger H / ( dx^\dagger H df)

    which corresponds to Broyden's first Jacobian update

    .. math:: J_+ = J + (df - J dx) dx^\dagger / dx^\dagger dx


    References
    ----------
    .. [1] B.A. van der Rotten, PhD thesis,
       "A limited memory Broyden method to solve high-dimensional
       systems of nonlinear equations". Mathematisch Instituut,
       Universiteit Leiden, The Netherlands (2003).
       https://math.leidenuniv.nl/scripties/Rotten.pdf

    Examples
    --------
    The following functions define a system of nonlinear equations

    >>> def fun(x):
    ...     return [x[0]  + 0.5 * (x[0] - x[1])**3 - 1.0,
    ...             0.5 * (x[1] - x[0])**3 + x[1]]

    A solution can be obtained as follows.

    >>> from scipy import optimize
    >>> sol = optimize.broyden1(fun, [0, 0])
    >>> sol
    array([0.84116396, 0.15883641])

    Nc                 N    t         j                          | _        d  _        |t        j
                  }| _        t        |t              rdn
|dd  |d   }|dz
  fz   |dk(  r fd _	        y |dk(  r fd _	        y |dk(  r fd	 _	        y t        d
| d      )Nr&   r   r   r
   c                  6     j                   j                    S r*   )rC  rY  reduce_paramsr   s   r(   r   z'BroydenFirst.__init__.<locals>.<lambda>  s    #5477#5#5}#E r'   simplec                  6     j                   j                    S r*   )rC  rK  r_  s   r(   r   z'BroydenFirst.__init__.<locals>.<lambda>  s    #8477#8#8-#H r'   restartc                  6     j                   j                    S r*   )rC  rI  r_  s   r(   r   z'BroydenFirst.__init__.<locals>.<lambda>  s    #9477#9#9=#I r'   zUnknown rank reduction method '')r  r   r  rC  r+   rD   rP  r   r  _reducerk   )r   r  reduction_methodrP  r`  s   `   @r(   r   zBroydenFirst.__init__  s    %
vvH &,M,QR0M/2!A-7u$EDL)HDL*IDL>?O>PPQRSSr'   c                     t         j                  | |||       t        | j                   | j                  d   | j
                        | _        y )Nr   )r  rh   r  r  r;   r3   rC  r   s       r(   rh   zBroydenFirst.setup  s8    T1a.TZZ]DJJGr'   c                 ,    t        | j                        S r*   )r   rC  r   s    r(   r   zBroydenFirst.todense  s    477|r'   c                    | j                   j                  |      }t        j                  |      j	                         sL| j                  | j                  | j                  | j                         | j                   j                  |      S |S r*   )	rC  r   r+   rA   rB   rh   r  r  rW   )r   r   r[   rs       r(   r   zBroydenFirst.solve  s\    GGNN1{{1~!!#JJt{{DKK;77>>!$$r'   c                 8    | j                   j                  |      S r*   )rC  r   r   r   s     r(   r   zBroydenFirst.matvec  s    ww}}Qr'   c                 8    | j                   j                  |      S r*   )rC  r   r   r   r[   s      r(   r   zBroydenFirst.rsolve  s    wwq!!r'   c                 8    | j                   j                  |      S r*   )rC  r   rm  s     r(   r   zBroydenFirst.rmatvec  s    ww~~a  r'   c                     | j                          | j                  j                  |      }|| j                  j                  |      z
  }|t	        ||      z  }	| j                  j                  ||	       y r*   )rf  rC  r   r   r   r<  
r   r/   r   r   r  r   r  rE   r%  r&  s
             r(   r  zBroydenFirst._update  sU    GGOOB##ROq!r'   )Nrc  Nr   )r"   r#   r$   r%   r   rh   r   r   r   r   r   r  r&   r'   r(   r   r   Y  s2    2hT2H "!r'   r   c                       e Zd ZdZd Zy)r  aK  
    Find a root of a function, using Broyden's second Jacobian approximation.

    This method is also known as "Broyden's bad method".

    Parameters
    ----------
    %(params_basic)s
    %(broyden_params)s
    %(params_extra)s

    See Also
    --------
    root : Interface to root finding algorithms for multivariate
           functions. See ``method='broyden2'`` in particular.

    Notes
    -----
    This algorithm implements the inverse Jacobian Quasi-Newton update

    .. math:: H_+ = H + (dx - H df) df^\dagger / ( df^\dagger df)

    corresponding to Broyden's second method.

    References
    ----------
    .. [1] B.A. van der Rotten, PhD thesis,
       "A limited memory Broyden method to solve high-dimensional
       systems of nonlinear equations". Mathematisch Instituut,
       Universiteit Leiden, The Netherlands (2003).

       https://web.archive.org/web/20161022015821/http://www.math.leidenuniv.nl/scripties/Rotten.pdf

    Examples
    --------
    The following functions define a system of nonlinear equations

    >>> def fun(x):
    ...     return [x[0]  + 0.5 * (x[0] - x[1])**3 - 1.0,
    ...             0.5 * (x[1] - x[0])**3 + x[1]]

    A solution can be obtained as follows.

    >>> from scipy import optimize
    >>> sol = optimize.broyden2(fun, [0, 0])
    >>> sol
    array([0.84116365, 0.15883529])

    c                     | j                          |}|| j                  j                  |      z
  }||dz  z  }	| j                  j                  ||	       y Nr]   )rf  rC  r   r<  rr  s
             r(   r  zBroydenSecond._update  sF    ##
Nq!r'   N)r"   r#   r$   r%   r  r&   r'   r(   r  r    s    0dr'   r  c                   ,    e Zd ZdZddZddZd Zd Zy)	r  a  
    Find a root of a function, using (extended) Anderson mixing.

    The Jacobian is formed by for a 'best' solution in the space
    spanned by last `M` vectors. As a result, only a MxM matrix
    inversions and MxN multiplications are required. [Ey]_

    Parameters
    ----------
    %(params_basic)s
    alpha : float, optional
        Initial guess for the Jacobian is (-1/alpha).
    M : float, optional
        Number of previous vectors to retain. Defaults to 5.
    w0 : float, optional
        Regularization parameter for numerical stability.
        Compared to unity, good values of the order of 0.01.
    %(params_extra)s

    See Also
    --------
    root : Interface to root finding algorithms for multivariate
           functions. See ``method='anderson'`` in particular.

    References
    ----------
    .. [Ey] V. Eyert, J. Comp. Phys., 124, 271 (1996).

    Examples
    --------
    The following functions define a system of nonlinear equations

    >>> def fun(x):
    ...     return [x[0]  + 0.5 * (x[0] - x[1])**3 - 1.0,
    ...             0.5 * (x[1] - x[0])**3 + x[1]]

    A solution can be obtained as follows.

    >>> from scipy import optimize
    >>> sol = optimize.anderson(fun, [0, 0])
    >>> sol
    array([0.84116588, 0.15883789])

    Nc                     t         j                  |        || _        || _        g | _        g | _        d | _        || _        y r*   )r  r   r  Mr   r  r   w0)r   r  ry  rx  s       r(   r   zAnderson.__init__P  s:    %

r'   c                    | j                    |z  }t        | j                        }|dk(  r|S t        j                  ||j
                        }t        |      D ]  }t        | j                  |   |      ||<     	 t        | j                  |      }t        |      D ]7  }|||   | j                  |   | j                   | j                  |   z  z   z  z  }9 |S # t        $ r# | j                  d d = | j                  d d = |cY S w xY wNr   r2   )r  r+  r   r+   emptyr3   rl   r   r  r   r'  r   )	r   r   r[   r   r   df_frX  r   r   s	            r(   r   zAnderson.solveY  s    jj[]L6Ixx)q 	*A4771:q)DG	*	$&&$'E q 	@A%(DGGAJDGGAJ)>>??B	@	  	

I		s   ;C )DDc           
      B   | | j                   z  }t        | j                        }|dk(  r|S t        j                  ||j
                        }t        |      D ]  }t        | j                  |   |      ||<     t        j                  ||f|j
                        }t        |      D ]  }t        |      D ]  }t        | j                  |   | j                  |         |||f<   ||k(  s4| j                  dk7  sD|||fxx   t        | j                  |   | j                  |         | j                  dz  z  | j                   z  z  cc<     t        ||      }	t        |      D ]7  }
||	|
   | j                  |
   | j                  |
   | j                   z  z   z  z  }9 |S )Nr   r2   r]   )r  r+  r   r+   r|  r3   rl   r   r  ry  r   )r   r   r   r   r}  rX  br1  r2  r   r   s              r(   r   zAnderson.matvecp  sy   R

]L6Ixx)q 	*A4771:q)DG	* HHaV177+q 	QA1X Qdggaj$''!*5!A#6dgglacFd4771:twwqz:477A:EdjjPPFQ	Q
 aq 	@A%(DGGAJDJJ)>>??B	@	r'   c                 8   | j                   dk(  ry | j                  j                  |       | j                  j                  |       t	        | j                        | j                   kD  rY| j                  j                  d       | j                  j                  d       t	        | j                        | j                   kD  rYt	        | j                        }t        j                  ||f|j                        }t        |      D ][  }	t        |	|      D ]J  }
|	|
k(  r| j                  dz  }nd}d|z   t        | j                  |	   | j                  |
         z  ||	|
f<   L ] |t        j                  |d      j                  j                         z  }|| _        y )Nr   r2   r]   r   )rx  r   r<  r  r+  popr+   r.  r3   rl   ry  r   triur   r   r'  )r   r/   r   r   r  r   r  r   r'  r1  r2  wds               r(   r  zAnderson._update  s7   66Q;rr$''lTVV#GGKKNGGKKN $''lTVV# LHHaV177+q 	=A1a[ =6!BBB$TWWQZ <<!A#=	= 	
RWWQ]__!!##r'   )Nr      r   )r"   r#   r$   r%   r   r   r   r  r&   r'   r(   r  r  	  s    +L..r'   r  c                   F    e Zd ZdZddZd ZddZd ZddZd Z	d	 Z
d
 Zy)r  a,  
    Find a root of a function, using diagonal Broyden Jacobian approximation.

    The Jacobian approximation is derived from previous iterations, by
    retaining only the diagonal of Broyden matrices.

    .. warning::

       This algorithm may be useful for specific problems, but whether
       it will work may depend strongly on the problem.

    Parameters
    ----------
    %(params_basic)s
    alpha : float, optional
        Initial guess for the Jacobian is (-1/alpha).
    %(params_extra)s

    See Also
    --------
    root : Interface to root finding algorithms for multivariate
           functions. See ``method='diagbroyden'`` in particular.

    Examples
    --------
    The following functions define a system of nonlinear equations

    >>> def fun(x):
    ...     return [x[0]  + 0.5 * (x[0] - x[1])**3 - 1.0,
    ...             0.5 * (x[1] - x[0])**3 + x[1]]

    A solution can be obtained as follows.

    >>> from scipy import optimize
    >>> sol = optimize.diagbroyden(fun, [0, 0])
    >>> sol
    array([0.84116403, 0.15883384])

    Nc                 <    t         j                  |        || _        y r*   r  r   r  r   r  s     r(   r   zDiagBroyden.__init__      %
r'   c                     t         j                  | |||       t        j                  | j                  d   fd| j
                  z  | j                        | _        y )Nr   r   r2   )r  rh   r+   fullr;   r  r3   r&  r   s       r(   rh   zDiagBroyden.setup  sA    T1a.$**Q-)1tzz>Lr'   c                 "    | | j                   z  S r*   r&  ro  s      r(   r   zDiagBroyden.solve      rDFF{r'   c                 "    | | j                   z  S r*   r  rm  s     r(   r   zDiagBroyden.matvec  r  r'   c                 >    | | j                   j                         z  S r*   r&  r   ro  s      r(   r   zDiagBroyden.rsolve      rDFFKKM!!r'   c                 >    | | j                   j                         z  S r*   r  rm  s     r(   r   zDiagBroyden.rmatvec  r  r'   c                 B    t        j                  | j                         S r*   )r+   diagr&  r   s    r(   r   zDiagBroyden.todense  s    wwwr'   c                 `    | xj                   || j                   |z  z   |z  |dz  z  z  c_         y ru  r  r  s          r(   r  zDiagBroyden._update  s*    2r	>2%gqj00r'   r*   r   r"   r#   r$   r%   r   rh   r   r   r   r   r   r  r&   r'   r(   r  r    s1    &PM"" 1r'   r  c                   @    e Zd ZdZd
dZddZd ZddZd Zd Z	d	 Z
y)r  a  
    Find a root of a function, using a scalar Jacobian approximation.

    .. warning::

       This algorithm may be useful for specific problems, but whether
       it will work may depend strongly on the problem.

    Parameters
    ----------
    %(params_basic)s
    alpha : float, optional
        The Jacobian approximation is (-1/alpha).
    %(params_extra)s

    See Also
    --------
    root : Interface to root finding algorithms for multivariate
           functions. See ``method='linearmixing'`` in particular.

    Nc                 <    t         j                  |        || _        y r*   r  r  s     r(   r   zLinearMixing.__init__   r  r'   c                 "    | | j                   z  S r*   r  ro  s      r(   r   zLinearMixing.solve      r$**}r'   c                 "    | | j                   z  S r*   r  rm  s     r(   r   zLinearMixing.matvec  r  r'   c                 H    | t        j                  | j                        z  S r*   r+   r   r  ro  s      r(   r   zLinearMixing.rsolve
      r"''$**%%%r'   c                 H    | t        j                  | j                        z  S r*   r  rm  s     r(   r   zLinearMixing.rmatvec  r  r'   c                     t        j                  t        j                  | j                  d   d| j                  z              S )Nr   )r+   r  r  r;   r  r   s    r(   r   zLinearMixing.todense  s,    wwrwwtzz!}bm<==r'   c                      y r*   r&   r  s          r(   r  zLinearMixing._update  r   r'   r*   r   )r"   r#   r$   r%   r   r   r   r   r   r   r  r&   r'   r(   r  r    s*    ,&&>r'   r  c                   F    e Zd ZdZddZd ZddZd ZddZd Z	d	 Z
d
 Zy)r	  a  
    Find a root of a function, using a tuned diagonal Jacobian approximation.

    The Jacobian matrix is diagonal and is tuned on each iteration.

    .. warning::

       This algorithm may be useful for specific problems, but whether
       it will work may depend strongly on the problem.

    See Also
    --------
    root : Interface to root finding algorithms for multivariate
           functions. See ``method='excitingmixing'`` in particular.

    Parameters
    ----------
    %(params_basic)s
    alpha : float, optional
        Initial Jacobian approximation is (-1/alpha).
    alphamax : float, optional
        The entries of the diagonal Jacobian are kept in the range
        ``[alpha, alphamax]``.
    %(params_extra)s
    Nc                 X    t         j                  |        || _        || _        d | _        y r*   )r  r   r  alphamaxbeta)r   r  r  s      r(   r   zExcitingMixing.__init__2  s%    %
 	r'   c                     t         j                  | |||       t        j                  | j                  d   f| j
                  | j                        | _        y r{  )r  rh   r+   r  r;   r  r3   r  r   s       r(   rh   zExcitingMixing.setup8  s=    T1a.GGTZZ],djj

K	r'   c                 "    | | j                   z  S r*   r  ro  s      r(   r   zExcitingMixing.solve<      r$))|r'   c                 "    | | j                   z  S r*   r  rm  s     r(   r   zExcitingMixing.matvec?  r  r'   c                 >    | | j                   j                         z  S r*   r  r   ro  s      r(   r   zExcitingMixing.rsolveB      r$)).."""r'   c                 >    | | j                   j                         z  S r*   r  rm  s     r(   r   zExcitingMixing.rmatvecE  r  r'   c                 F    t        j                  d| j                  z        S )Nr  )r+   r  r  r   s    r(   r   zExcitingMixing.todenseH  s    wwr$))|$$r'   c                    || j                   z  dkD  }| j                  |xx   | j                  z  cc<   | j                  | j                  | <   t        j                  | j                  d| j
                  | j                         y )Nr   )out)r  r  r  r+   clipr  )r   r/   r   r   r  r   r  incrs           r(   r  zExcitingMixing._updateK  s\    }q 		$4::%::		4%
		1dmm;r'   )Nr\   r   r  r&   r'   r(   r	  r	    s0    4L##%<r'   r	  c                   <    e Zd ZdZ	 	 d	dZd Zd Zd
dZd Zd Z	y)r   a  
    Find a root of a function, using Krylov approximation for inverse Jacobian.

    This method is suitable for solving large-scale problems.

    Parameters
    ----------
    %(params_basic)s
    rdiff : float, optional
        Relative step size to use in numerical differentiation.
    method : str or callable, optional
        Krylov method to use to approximate the Jacobian.  Can be a string,
        or a function implementing the same interface as the iterative
        solvers in `scipy.sparse.linalg`. If a string, needs to be one of:
        ``'lgmres'``, ``'gmres'``, ``'bicgstab'``, ``'cgs'``, ``'minres'``,
        ``'tfqmr'``.

        The default is `scipy.sparse.linalg.lgmres`.
    inner_maxiter : int, optional
        Parameter to pass to the "inner" Krylov solver: maximum number of
        iterations. Iteration will stop after maxiter steps even if the
        specified tolerance has not been achieved.
    inner_M : LinearOperator or InverseJacobian
        Preconditioner for the inner Krylov iteration.
        Note that you can use also inverse Jacobians as (adaptive)
        preconditioners. For example,

        >>> from scipy.optimize import BroydenFirst, KrylovJacobian
        >>> from scipy.optimize import InverseJacobian
        >>> jac = BroydenFirst()
        >>> kjac = KrylovJacobian(inner_M=InverseJacobian(jac))

        If the preconditioner has a method named 'update', it will be called
        as ``update(x, f)`` after each nonlinear step, with ``x`` giving
        the current point, and ``f`` the current function value.
    outer_k : int, optional
        Size of the subspace kept across LGMRES nonlinear iterations.
        See `scipy.sparse.linalg.lgmres` for details.
    inner_kwargs : kwargs
        Keyword parameters for the "inner" Krylov solver
        (defined with `method`). Parameter names must start with
        the `inner_` prefix which will be stripped before passing on
        the inner method. See, e.g., `scipy.sparse.linalg.gmres` for details.
    %(params_extra)s

    See Also
    --------
    root : Interface to root finding algorithms for multivariate
           functions. See ``method='krylov'`` in particular.
    scipy.sparse.linalg.gmres
    scipy.sparse.linalg.lgmres

    Notes
    -----
    This function implements a Newton-Krylov solver. The basic idea is
    to compute the inverse of the Jacobian with an iterative Krylov
    method. These methods require only evaluating the Jacobian-vector
    products, which are conveniently approximated by a finite difference:

    .. math:: J v \approx (f(x + \omega*v/|v|) - f(x)) / \omega

    Due to the use of iterative matrix inverses, these methods can
    deal with large nonlinear problems.

    SciPy's `scipy.sparse.linalg` module offers a selection of Krylov
    solvers to choose from. The default here is `lgmres`, which is a
    variant of restarted GMRES iteration that reuses some of the
    information obtained in the previous Newton steps to invert
    Jacobians in subsequent steps.

    For a review on Newton-Krylov methods, see for example [1]_,
    and for the LGMRES sparse inverse method, see [2]_.

    References
    ----------
    .. [1] C. T. Kelley, Solving Nonlinear Equations with Newton's Method,
           SIAM, pp.57-83, 2003.
           :doi:`10.1137/1.9780898718898.ch3`
    .. [2] D.A. Knoll and D.E. Keyes, J. Comp. Phys. 193, 357 (2004).
           :doi:`10.1016/j.jcp.2003.08.010`
    .. [3] A.H. Baker and E.R. Jessup and T. Manteuffel,
           SIAM J. Matrix Anal. Appl. 26, 962 (2005).
           :doi:`10.1137/S0895479803422014`

    Examples
    --------
    The following functions define a system of nonlinear equations

    >>> def fun(x):
    ...     return [x[0] + 0.5 * x[1] - 1.0,
    ...             0.5 * (x[1] - x[0]) ** 2]

    A solution can be obtained as follows.

    >>> from scipy import optimize
    >>> sol = optimize.newton_krylov(fun, [0, 0])
    >>> sol
    array([0.66731771, 0.66536458])

    Nc                 N   || _         || _        t        t        j                  j
                  j                  t        j                  j
                  j                  t        j                  j
                  j                  t        j                  j
                  j                  t        j                  j
                  j                  t        j                  j
                  j                        j                  ||      | _        t        || j                         | _        | j                  t        j                  j
                  j                  u r<|| j                  d<   d| j                  d<   | j                  j                  dd       nR| j                  t        j                  j
                  j                   t        j                  j
                  j                  t        j                  j
                  j                  fv r| j                  j                  dd       n| j                  t        j                  j
                  j                  u r|| j                  d<   d| j                  d<   | j                  j                  d	g        | j                  j                  d
d       | j                  j                  dd       | j                  j                  dd       t#        | j                        j$                  D cg c]  }|dvr|
 }}|j'                         D ]  \  }	}
|	j)                  d      st+        d|	       |	dd  |vrFt-        |	dd  |d      }|r
d|d    d}nd}t/        j0                  d|	 d| d|z   dt2               r|
| j                  |	dd  <    y c c}w )N)bicgstabgmreslgmrescgsminrestfqmr)rx   rx  rc  r   rx   atolr   outer_kouter_vprepend_outer_vTstore_outer_AvF)r   argskwargsinner_zUnknown parameter    )r   z Did you mean 'z'? zOption 'z#' is invalid for the inner method: zO. It will be ignored.Please check inner method documentation for valid options.r?  )r@  category)preconditionerr   r  r   r   r   r  r  r  r  r  r  getmethod	method_kw
setdefaultgcrotmkr   
parametersr   
startswithrk   r   rA  rB  UserWarning)r   r   r  inner_maxiterinner_Mr  r   rX  valid_inner_paramskeyr   inner_param_suggestionssuggestion_msgs                r(   r   zKrylovJacobian.__init__  s   %
 \\((11,,%%++<<&&--##''<<&&--,,%%++ c&&! 	 mt7J7JK;;%,,--333(5DNN9%()DNN9%NN%%fa0[[U\\0088"\\0099"\\00446 6 NN%%fa0[[ELL//666(/DNN9%()DNN9%NN%%i4NN%%&7> NN%%&6>NN%%fa0 !-88
22 
 

 ((* 	,JC>>(+ #5cU!;<<12w00*;CG<N>?+A' +(7)@)C(DB'HN &(N se#Fvh OQ Q %%  !(	 &+DNN3qr7#7	,
s   <N"c                     t        | j                        j                         }t        | j                        j                         }| j                  t        d|      z  t        d|      z  | _        y )Nr   )r   r=   r-   r  r   omega)r   mxmfs      r(   _update_diff_stepz KrylovJacobian._update_diff_step	  sO    \\ZZ#a*,s1bz9
r'   c                 f   t        |      }|dk(  rd|z  S | j                  |z  }| j                  | j                  ||z  z         | j                  z
  |z  }t        j                  t        j                  |            s3t        j                  t        j                  |            rt        d      |S )Nr   z$Function returned non-finite results)	r   r  rW   r=   r  r+   rB   rA   rk   )r   rE   nvscrk  s        r(   r   zKrylovJacobian.matvec  s    !W7Q3JZZ"_YYtwwA~&0B6vvbkk!n%"&&Q*@CDDr'   c                     d| j                   v r- | j                  | j                  |fi | j                   \  }}|S  | j                  | j                  |fd|i| j                   \  }}|S )Nrtol)r  r  op)r   rhsr[   solr   s        r(   r   zKrylovJacobian.solve  sg    T^^##DGGSCDNNCIC 
 $DGGSMsMdnnMIC
r'   c                     || _         || _        | j                          | j                  4t	        | j                  d      r| j                  j                  ||       y y y )Nrp   )r=   r  r  r  r   rp   )r   r/   r   s      r(   rp   zKrylovJacobian.update  sZ      *t**H5##**1a0 6 +r'   c                    t         j                  | |||       || _        || _        t        j
                  j                  j                  |       | _        | j                  1t        j                  |j                        j                  dz  | _	        | j                          | j                  5t!        | j                  d      r| j                  j                  |||       y y y )Nr  rh   )r   rh   r=   r  r   r   r   aslinearoperatorr  r   r+   r   r3   r   r  r  r   )r   r/   r   rW   s       r(   rh   zKrylovJacobian.setup)  s    tQ4(,,%%66t<::!''*..48DJ  *t**G4##))!Q5 5 +r'   )Nr     N
   r   )
r"   r#   r$   r%   r   r  r   r   rp   rh   r&   r'   r(   r   r   V  s3    cJ CE')K,Z:
16r'   r   c           	      L   t        |j                        }|\  }}}}}}}	t        t        |t	        |       d |            }
dj                  |
D cg c]  \  }}| d| c}}      }|rd|z   }dj                  |
D cg c]  \  }}| d|  c}}      }|r|dz   }|rt        d|       d}|t        | ||j                  |      z  }i }|j                  t                      t        ||       ||    }|j                  |_        t        |       |S c c}}w c c}}w )a  
    Construct a solver wrapper with given name and Jacobian approx.

    It inspects the keyword arguments of ``jac.__init__``, and allows to
    use the same arguments in the wrapper function, in addition to the
    keyword arguments of `nonlin_solve`

    Nz, =zUnexpected signature a  
def %(name)s(F, xin, iter=None %(kw)s, verbose=False, maxiter=None,
             f_tol=None, f_rtol=None, x_tol=None, x_rtol=None,
             tol_norm=None, line_search='armijo', callback=None, **kw):
    jac = %(jac)s(%(kwkw)s **kw)
    return nonlin_solve(F, xin, jac, iter, verbose, maxiter,
                        f_tol, f_rtol, x_tol, x_rtol, tol_norm, line_search,
                        callback)
)r   r   jackwkw)_getfullargspecr   listr#  r+  joinrk   r  r"   rp   globalsexecr%   rL   )r   r  r   r  varargsvarkwdefaults
kwonlyargs
kwdefaults_r  rX  rE   kw_strkwkw_strwrappernsrW   s                     r(   _nonlin_wrapperr  >  s.     -I@I=D'5(J
A#dCM>?+X67FYY8A1#Qqe89Fyy8AQCq*89Hd?0<==G $6s||"*, ,G	BIIgi"d8D;;DLTNK; 9 9s   D
D 
r   r   r   r   r   r   r   )r   NFNNNNNNrY   NFT)rY   g:0yE>r   )Br   rq   rA  numpyr+   r   r   r   scipy.linalgr   r   r   r	   r
   r   scipy.sparse.linalgr   scipy.sparser   scipy._lib._utilr   r   r   r  _linesearchr   r   r   difflibr   typesr   __all__	Exceptionr    r0   r7   r?   rF   r  striprJ   rL   r   ro   re   r   r   rg   r  r  r   r  r  r  r  r	  r   r  r   r   r   r   r   r   r   r&   r'   r(   <module>r
     s    
   $ $ ? ?   ' > F C  % J	I 	  " $ 	 
" ($ (	P 
a1
h/
 ?DKO?C48O"d 	  FJ!*Z9< 9<@H HV(# (#VY?@X :L L^  1 2  	* 
+  0m> m`9L 9@U~ UxA1. A1H+> +\8<^ 8<~a6X a6P)X :|4:}5:x0~|<m[9 !1>B@r'   