
    bi              	           d Z ddlmZ ddlmZ d Zd Zd Zd Zd	 Z	d
 Z
d Zd Zd Zd Zeee	e
eeeedZd Zd Zd Zd Zd Zy)aj  
'Generic' Array API backend for RBF interpolation.

The general logic is this: `_rbfinterp.py` implements the user API and calls
into either `_rbfinterp_np` (the "numpy backend"), or `_rbfinterp_xp` (the
"generic backend".

The numpy backend offloads performance-critical computations to the
pythran-compiled `_rbfinterp_pythran` extension. This way, the call chain is

    _rbfinterp.py <-- _rbfinterp_np.py <-- _rbfinterp_pythran.py

The "generic" backend here is a drop-in replacement of the API of
`_rbfinterp_np.py` for use in `_rbfinterp.py` with non-numpy arrays.

The implementation closely follows `_rbfinterp_np + _rbfinterp_pythran`, with
the following differences:

  -  We used vectorized code not explicit loops in `_build_system` and
     `_build_evaluation_coefficients`; this is more torch/jax friendly;
  - RBF kernels are also "vectorized" and not scalar: they receive an
    array of norms not a single norm;
  - RBF kernels accept an extra xp= argument;

In general, we would prefer less code duplication. The main blocker ATM is
that pythran cannot compile functions with an xp= argument where xp is numpy.
    )LinAlgError   )_monomial_powers_implc                     t        | |      }|j                  |      }|j                  d   dk(  r|j                  |d| f      }|S )Nr   )r   asarrayshapereshape)ndimdegreexpouts       Z/home/cdr/jupyterlab/.venv/lib/python3.12/site-packages/scipy/interpolate/_rbfinterp_xp.py_monomial_powersr       sD    
f
-C
**S/C
yy|qjjq$i(J    c           	      H   t        | ||||||      \  }}}	}
	 |j                  j                  ||      }|	|
|fS # t        $ r_ d}|j                  d   }|dkD  r=t        | |	z
  |
z  ||      }|j                  j                  |      }||k  r	d| d| d}t        |      w xY w)a   Build and solve the RBF interpolation system of equations.

    Parameters
    ----------
    y : (P, N) float ndarray
        Data point coordinates.
    d : (P, S) float ndarray
        Data values at `y`.
    smoothing : (P,) float ndarray
        Smoothing parameter for each data point.
    kernel : str
        Name of the RBF.
    epsilon : float
        Shape parameter.
    powers : (R, N) int ndarray
        The exponents for each monomial in the polynomial.

    Returns
    -------
    coeffs : (P + R, S) float ndarray
        Coefficients for each RBF and monomial.
    shift : (N,) float ndarray
        Domain shift used to create the polynomial matrix.
    scale : (N,) float ndarray
        Domain scaling used to create the polynomial matrix.

    zSingular matrixr   )r   zqSingular matrix. The matrix of monomials evaluated at the data point coordinates does not have full column rank (/z).)_build_systemlinalgsolve	Exceptionr   polynomial_matrixmatrix_rankr   )yd	smoothingkernelepsilonpowersr   lhsrhsshiftscalecoeffsmsgnmonospmatranks                   r   _build_and_solve_systemr(   (   s    8 +	1i&"
CeUc*& %%  
  aA:$a%i%62FD99((.Df}!F!F82/ 
 #!s
   9 A(B!c                     |  S N rr   s     r   linearr.   ^   s	    2Ir   c                 X    |j                  | dk(  d| dz  |j                  |       z        S )Nr      )wherelogr,   s     r   thin_plate_spliner3   b   s*    88AFAq!tbffQi/00r   c                     | dz  S )N   r+   r,   s     r   cubicr6   g   s    a4Kr   c                     | dz   S )N   r+   r,   s     r   quinticr9   k   s    qD5Lr   c                 2    |j                  | dz  dz          S )Nr0   r   sqrtr,   s     r   multiquadricr=   o   s    GGAqD1Hr   c                 6    d|j                  | dz  dz         z  S N      ?r0   r;   r,   s     r   inverse_multiquadricrA   s   s    A$$$r   c                     d| dz  dz   z  S r?   r+   r,   s     r   inverse_quadraticrC   w   s    !Q$*r   c                 ,    |j                  | dz         S )Nr0   )expr,   s     r   gaussianrF   {   s    661a4%=r   )r.   r3   r6   r9   r=   rA   rC   rF   c           
      x     ||j                   j                  | dddddf   | dddddf   z
  d      |      S )z+Evaluate RBFs, with centers at `x`, at `x`.Naxis)r   vector_norm)xkernel_funcr   s      r   kernel_matrixrN      sA    
		aa
ma4
m;"Er r   c                 B    |j                  | dddddf   |z  d      S )z9Evaluate monomials, with exponents from `powers`, at `x`.NrH   rI   )prod)rL   r   r   s      r   r   r      s$    771QaZ=F*744r   c           
         |j                   d   }|j                   d   }t        |   }	|j                  | d      }
|j                  | d      }||
z   dz  }||
z
  dz  }|j	                  |dk(  d|      }| |z  }| |z
  |z  }t        ||	|      }t        |||      }|j                  |j                  ||fd      |j                  |j                  |j                  ||f      fd      gd      |j                  |j                  ||j                  |      g            z   }|j                  ||j                  ||f      gd      }||||fS )a=  Build the system used to solve for the RBF interpolant coefficients.

    Parameters
    ----------
    y : (P, N) float ndarray
        Data point coordinates.
    d : (P, S) float ndarray
        Data values at `y`.
    smoothing : (P,) float ndarray
        Smoothing parameter for each data point.
    kernel : str
        Name of the RBF.
    epsilon : float
        Shape parameter.
    powers : (R, N) int ndarray
        The exponents for each monomial in the polynomial.

    Returns
    -------
    lhs : (P + R, P + R) float ndarray
        Left-hand side matrix.
    rhs : (P + R, S) float ndarray
        Right-hand side matrix.
    shift : (N,) float ndarray
        Domain shift used to create the polynomial matrix.
    scale : (N,) float ndarray
        Domain scaling used to create the polynomial matrix.

    r   r   rI   r0   g        r@   )r   NAME_TO_FUNCminmaxr1   rN   r   concatTzerosdiag)r   r   r   r   r   r   r   sr-   rM   minsmaxsr!   r"   yepsyhatout_kernelsout_polyr   r    s                       r   r   r      si   < 	

AQAv&K 66!!6D66!!6DD[!OED[!OE HHUc\3.EW9DIuD {B7K vr2H
))	K*	3	HJJ!Q 01	:	
   
 		9bhhqk":;<=C ))Q!Q())
2CUE!!r   c                    t         |   }||z  }	| |z  }
| |z
  |z  }|j                   ||j                  j                  |
dddddf   |	dddddf   z
  d      |      |j	                  |dddddf   |z  d      gd      }|S )a  Construct the coefficients needed to evaluate
    the RBF.

    Parameters
    ----------
    x : (Q, N) float ndarray
        Evaluation point coordinates.
    y : (P, N) float ndarray
        Data point coordinates.
    kernel : str
        Name of the RBF.
    epsilon : float
        Shape parameter.
    powers : (R, N) int ndarray
        The exponents for each monomial in the polynomial.
    shift : (N,) float ndarray
        Shifts the polynomial domain for numerical stability.
    scale : (N,) float ndarray
        Scales the polynomial domain for numerical stability.

    Returns
    -------
    (Q, P + R) float ndarray

    NrH   rI   )rR   rU   r   rK   rP   )rL   r   r   r   r   r!   r"   r   rM   r\   xepsxhatvecs                r   _build_evaluation_coefficientsrd      s    8 v&KW9DW9DIuD ))		%%D!$tD!QJ'77b & 
 GGDD!$.RG8	
   	C Jr   c	           
      0    t        | |||||||      }	|	|z  S r*   )rd   )
rL   r   r   r   r   r!   r"   r#   r   rc   s
             r   compute_interpolationrf     s)    
(	1fgvueRC <r   N)__doc__numpy.linalgr   _rbfinterp_commonr   r   r(   r.   r3   r6   r9   r=   rA   rC   rF   rR   rN   r   r   rd   rf   r+   r   r   <module>rj      s   6 % 43 l1
%
 )/)	5
;"|.br   