# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
import math
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import torch
import torch.nn.functional as F
from transformers import (
    CLIPImageProcessor,
    CLIPTextModel,
    CLIPTextModelWithProjection,
    CLIPTokenizer,
    CLIPVisionModelWithProjection,
)

from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...loaders import (
    FromSingleFileMixin,
    IPAdapterMixin,
    StableDiffusionXLLoraLoaderMixin,
    TextualInversionLoaderMixin,
)
from ...models import AutoencoderKL, UNet2DConditionModel
from ...models.attention_processor import (
    Attention,
    AttnProcessor,
    AttnProcessor2_0,
    XFormersAttnProcessor,
)
from ...models.lora import adjust_lora_scale_text_encoder
from ...schedulers import DDIMScheduler, DPMSolverMultistepScheduler
from ...utils import (
    USE_PEFT_BACKEND,
    is_invisible_watermark_available,
    is_torch_xla_available,
    logging,
    replace_example_docstring,
    scale_lora_layers,
    unscale_lora_layers,
)
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline
from .pipeline_output import LEditsPPDiffusionPipelineOutput, LEditsPPInversionPipelineOutput


if is_invisible_watermark_available():
    from ..stable_diffusion_xl.watermark import StableDiffusionXLWatermarker

if is_torch_xla_available():
    import torch_xla.core.xla_model as xm

    XLA_AVAILABLE = True
else:
    XLA_AVAILABLE = False

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> import torch

        >>> from diffusers import LEditsPPPipelineStableDiffusionXL
        >>> from diffusers.utils import load_image

        >>> pipe = LEditsPPPipelineStableDiffusionXL.from_pretrained(
        ...     "stabilityai/stable-diffusion-xl-base-1.0", variant="fp16", torch_dtype=torch.float16
        ... )
        >>> pipe.enable_vae_tiling()
        >>> pipe = pipe.to("cuda")

        >>> img_url = "https://www.aiml.informatik.tu-darmstadt.de/people/mbrack/tennis.jpg"
        >>> image = load_image(img_url).resize((1024, 1024))

        >>> _ = pipe.invert(image=image, num_inversion_steps=50, skip=0.2)

        >>> edited_image = pipe(
        ...     editing_prompt=["tennis ball", "tomato"],
        ...     reverse_editing_direction=[True, False],
        ...     edit_guidance_scale=[5.0, 10.0],
        ...     edit_threshold=[0.9, 0.85],
        ... ).images[0]
        ```
"""


# Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LeditsAttentionStore
class LeditsAttentionStore:
    @staticmethod
    def get_empty_store():
        return {"down_cross": [], "mid_cross": [], "up_cross": [], "down_self": [], "mid_self": [], "up_self": []}

    def __call__(self, attn, is_cross: bool, place_in_unet: str, editing_prompts, PnP=False):
        # attn.shape = batch_size * head_size, seq_len query, seq_len_key
        if attn.shape[1] <= self.max_size:
            bs = 1 + int(PnP) + editing_prompts
            skip = 2 if PnP else 1  # skip PnP & unconditional
            attn = torch.stack(attn.split(self.batch_size)).permute(1, 0, 2, 3)
            source_batch_size = int(attn.shape[1] // bs)
            self.forward(attn[:, skip * source_batch_size :], is_cross, place_in_unet)

    def forward(self, attn, is_cross: bool, place_in_unet: str):
        key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"

        self.step_store[key].append(attn)

    def between_steps(self, store_step=True):
        if store_step:
            if self.average:
                if len(self.attention_store) == 0:
                    self.attention_store = self.step_store
                else:
                    for key in self.attention_store:
                        for i in range(len(self.attention_store[key])):
                            self.attention_store[key][i] += self.step_store[key][i]
            else:
                if len(self.attention_store) == 0:
                    self.attention_store = [self.step_store]
                else:
                    self.attention_store.append(self.step_store)

            self.cur_step += 1
        self.step_store = self.get_empty_store()

    def get_attention(self, step: int):
        if self.average:
            attention = {
                key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store
            }
        else:
            assert step is not None
            attention = self.attention_store[step]
        return attention

    def aggregate_attention(
        self, attention_maps, prompts, res: Union[int, Tuple[int]], from_where: List[str], is_cross: bool, select: int
    ):
        out = [[] for x in range(self.batch_size)]
        if isinstance(res, int):
            num_pixels = res**2
            resolution = (res, res)
        else:
            num_pixels = res[0] * res[1]
            resolution = res[:2]

        for location in from_where:
            for bs_item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]:
                for batch, item in enumerate(bs_item):
                    if item.shape[1] == num_pixels:
                        cross_maps = item.reshape(len(prompts), -1, *resolution, item.shape[-1])[select]
                        out[batch].append(cross_maps)

        out = torch.stack([torch.cat(x, dim=0) for x in out])
        # average over heads
        out = out.sum(1) / out.shape[1]
        return out

    def __init__(self, average: bool, batch_size=1, max_resolution=16, max_size: int = None):
        self.step_store = self.get_empty_store()
        self.attention_store = []
        self.cur_step = 0
        self.average = average
        self.batch_size = batch_size
        if max_size is None:
            self.max_size = max_resolution**2
        elif max_size is not None and max_resolution is None:
            self.max_size = max_size
        else:
            raise ValueError("Only allowed to set one of max_resolution or max_size")


# Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LeditsGaussianSmoothing
class LeditsGaussianSmoothing:
    def __init__(self, device):
        kernel_size = [3, 3]
        sigma = [0.5, 0.5]

        # The gaussian kernel is the product of the gaussian function of each dimension.
        kernel = 1
        meshgrids = torch.meshgrid([torch.arange(size, dtype=torch.float32) for size in kernel_size], indexing="ij")
        for size, std, mgrid in zip(kernel_size, sigma, meshgrids):
            mean = (size - 1) / 2
            kernel *= 1 / (std * math.sqrt(2 * math.pi)) * torch.exp(-(((mgrid - mean) / (2 * std)) ** 2))

        # Make sure sum of values in gaussian kernel equals 1.
        kernel = kernel / torch.sum(kernel)

        # Reshape to depthwise convolutional weight
        kernel = kernel.view(1, 1, *kernel.size())
        kernel = kernel.repeat(1, *[1] * (kernel.dim() - 1))

        self.weight = kernel.to(device)

    def __call__(self, input):
        """
        Arguments:
        Apply gaussian filter to input.
            input (torch.Tensor): Input to apply gaussian filter on.
        Returns:
            filtered (torch.Tensor): Filtered output.
        """
        return F.conv2d(input, weight=self.weight.to(input.dtype))


# Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LEDITSCrossAttnProcessor
class LEDITSCrossAttnProcessor:
    def __init__(self, attention_store, place_in_unet, pnp, editing_prompts):
        self.attnstore = attention_store
        self.place_in_unet = place_in_unet
        self.editing_prompts = editing_prompts
        self.pnp = pnp

    def __call__(
        self,
        attn: Attention,
        hidden_states,
        encoder_hidden_states,
        attention_mask=None,
        temb=None,
    ):
        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        self.attnstore(
            attention_probs,
            is_cross=True,
            place_in_unet=self.place_in_unet,
            editing_prompts=self.editing_prompts,
            PnP=self.pnp,
        )

        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        hidden_states = hidden_states / attn.rescale_output_factor
        return hidden_states


class LEditsPPPipelineStableDiffusionXL(
    DiffusionPipeline,
    FromSingleFileMixin,
    StableDiffusionXLLoraLoaderMixin,
    TextualInversionLoaderMixin,
    IPAdapterMixin,
):
    """
    Pipeline for textual image editing using LEDits++ with Stable Diffusion XL.

    This model inherits from [`DiffusionPipeline`] and builds on the [`StableDiffusionXLPipeline`]. Check the
    superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a
    particular device, etc.).

    In addition the pipeline inherits the following loading methods:
        - *LoRA*: [`LEditsPPPipelineStableDiffusionXL.load_lora_weights`]
        - *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`]

    as well as the following saving methods:
        - *LoRA*: [`loaders.StableDiffusionXLPipeline.save_lora_weights`]

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`~transformers.CLIPTextModel`]):
            Frozen text-encoder. Stable Diffusion XL uses the text portion of
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
        text_encoder_2 ([`~transformers.CLIPTextModelWithProjection`]):
            Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
            specifically the
            [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
            variant.
        tokenizer ([`~transformers.CLIPTokenizer`]):
            Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        tokenizer_2 ([`~transformers.CLIPTokenizer`]):
            Second Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
        scheduler ([`DPMSolverMultistepScheduler`] or [`DDIMScheduler`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
            [`DPMSolverMultistepScheduler`] or [`DDIMScheduler`]. If any other scheduler is passed it will
            automatically be set to [`DPMSolverMultistepScheduler`].
        force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
            Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
            `stabilityai/stable-diffusion-xl-base-1-0`.
        add_watermarker (`bool`, *optional*):
            Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
            watermark output images. If not defined, it will default to True if the package is installed, otherwise no
            watermarker will be used.
    """

    model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
    _optional_components = [
        "tokenizer",
        "tokenizer_2",
        "text_encoder",
        "text_encoder_2",
        "image_encoder",
        "feature_extractor",
    ]
    _callback_tensor_inputs = [
        "latents",
        "prompt_embeds",
        "negative_prompt_embeds",
        "add_text_embeds",
        "add_time_ids",
        "negative_pooled_prompt_embeds",
        "negative_add_time_ids",
    ]

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        text_encoder_2: CLIPTextModelWithProjection,
        tokenizer: CLIPTokenizer,
        tokenizer_2: CLIPTokenizer,
        unet: UNet2DConditionModel,
        scheduler: Union[DPMSolverMultistepScheduler, DDIMScheduler],
        image_encoder: CLIPVisionModelWithProjection = None,
        feature_extractor: CLIPImageProcessor = None,
        force_zeros_for_empty_prompt: bool = True,
        add_watermarker: Optional[bool] = None,
    ):
        super().__init__()

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            text_encoder_2=text_encoder_2,
            tokenizer=tokenizer,
            tokenizer_2=tokenizer_2,
            unet=unet,
            scheduler=scheduler,
            image_encoder=image_encoder,
            feature_extractor=feature_extractor,
        )
        self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)

        if not isinstance(scheduler, DDIMScheduler) and not isinstance(scheduler, DPMSolverMultistepScheduler):
            self.scheduler = DPMSolverMultistepScheduler.from_config(
                scheduler.config, algorithm_type="sde-dpmsolver++", solver_order=2
            )
            logger.warning(
                "This pipeline only supports DDIMScheduler and DPMSolverMultistepScheduler. "
                "The scheduler has been changed to DPMSolverMultistepScheduler."
            )

        self.default_sample_size = (
            self.unet.config.sample_size
            if hasattr(self, "unet") and self.unet is not None and hasattr(self.unet.config, "sample_size")
            else 128
        )

        add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()

        if add_watermarker:
            self.watermark = StableDiffusionXLWatermarker()
        else:
            self.watermark = None
        self.inversion_steps = None

    def encode_prompt(
        self,
        device: Optional[torch.device] = None,
        num_images_per_prompt: int = 1,
        negative_prompt: Optional[str] = None,
        negative_prompt_2: Optional[str] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
        lora_scale: Optional[float] = None,
        clip_skip: Optional[int] = None,
        enable_edit_guidance: bool = True,
        editing_prompt: Optional[str] = None,
        editing_prompt_embeds: Optional[torch.Tensor] = None,
        editing_pooled_prompt_embeds: Optional[torch.Tensor] = None,
    ) -> object:
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead.
            negative_prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
                `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
            negative_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
                input argument.
            lora_scale (`float`, *optional*):
                A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
            enable_edit_guidance (`bool`):
                Whether to guide towards an editing prompt or not.
            editing_prompt (`str` or `List[str]`, *optional*):
                Editing prompt(s) to be encoded. If not defined and 'enable_edit_guidance' is True, one has to pass
                `editing_prompt_embeds` instead.
            editing_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated edit text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
                If not provided and 'enable_edit_guidance' is True, editing_prompt_embeds will be generated from
                `editing_prompt` input argument.
            editing_pooled_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated edit pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, pooled editing_pooled_prompt_embeds will be generated from `editing_prompt`
                input argument.
        """
        device = device or self._execution_device

        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
            self._lora_scale = lora_scale

            # dynamically adjust the LoRA scale
            if self.text_encoder is not None:
                if not USE_PEFT_BACKEND:
                    adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
                else:
                    scale_lora_layers(self.text_encoder, lora_scale)

            if self.text_encoder_2 is not None:
                if not USE_PEFT_BACKEND:
                    adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
                else:
                    scale_lora_layers(self.text_encoder_2, lora_scale)

        batch_size = self.batch_size

        # Define tokenizers and text encoders
        tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
        text_encoders = (
            [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
        )
        num_edit_tokens = 0

        # get unconditional embeddings for classifier free guidance
        zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt

        if negative_prompt_embeds is None:
            negative_prompt = negative_prompt or ""
            negative_prompt_2 = negative_prompt_2 or negative_prompt

            # normalize str to list
            negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
            negative_prompt_2 = (
                batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
            )

            uncond_tokens: List[str]

            if batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but image inversion "
                    f" has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of the input images."
                )
            else:
                uncond_tokens = [negative_prompt, negative_prompt_2]

            negative_prompt_embeds_list = []
            for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
                if isinstance(self, TextualInversionLoaderMixin):
                    negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)

                uncond_input = tokenizer(
                    negative_prompt,
                    padding="max_length",
                    max_length=tokenizer.model_max_length,
                    truncation=True,
                    return_tensors="pt",
                )

                negative_prompt_embeds = text_encoder(
                    uncond_input.input_ids.to(device),
                    output_hidden_states=True,
                )
                # We are only ALWAYS interested in the pooled output of the final text encoder
                negative_pooled_prompt_embeds = negative_prompt_embeds[0]
                negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]

                negative_prompt_embeds_list.append(negative_prompt_embeds)

            negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)

            if zero_out_negative_prompt:
                negative_prompt_embeds = torch.zeros_like(negative_prompt_embeds)
                negative_pooled_prompt_embeds = torch.zeros_like(negative_pooled_prompt_embeds)

        if enable_edit_guidance and editing_prompt_embeds is None:
            editing_prompt_2 = editing_prompt

            editing_prompts = [editing_prompt, editing_prompt_2]
            edit_prompt_embeds_list = []

            for editing_prompt, tokenizer, text_encoder in zip(editing_prompts, tokenizers, text_encoders):
                if isinstance(self, TextualInversionLoaderMixin):
                    editing_prompt = self.maybe_convert_prompt(editing_prompt, tokenizer)

                max_length = negative_prompt_embeds.shape[1]
                edit_concepts_input = tokenizer(
                    # [x for item in editing_prompt for x in repeat(item, batch_size)],
                    editing_prompt,
                    padding="max_length",
                    max_length=max_length,
                    truncation=True,
                    return_tensors="pt",
                    return_length=True,
                )
                num_edit_tokens = edit_concepts_input.length - 2

                edit_concepts_embeds = text_encoder(
                    edit_concepts_input.input_ids.to(device),
                    output_hidden_states=True,
                )
                # We are only ALWAYS interested in the pooled output of the final text encoder
                editing_pooled_prompt_embeds = edit_concepts_embeds[0]
                if clip_skip is None:
                    edit_concepts_embeds = edit_concepts_embeds.hidden_states[-2]
                else:
                    # "2" because SDXL always indexes from the penultimate layer.
                    edit_concepts_embeds = edit_concepts_embeds.hidden_states[-(clip_skip + 2)]

                edit_prompt_embeds_list.append(edit_concepts_embeds)

            edit_concepts_embeds = torch.concat(edit_prompt_embeds_list, dim=-1)
        elif not enable_edit_guidance:
            edit_concepts_embeds = None
            editing_pooled_prompt_embeds = None

        negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
        bs_embed, seq_len, _ = negative_prompt_embeds.shape
        # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
        seq_len = negative_prompt_embeds.shape[1]
        negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
        negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
        negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        if enable_edit_guidance:
            bs_embed_edit, seq_len, _ = edit_concepts_embeds.shape
            edit_concepts_embeds = edit_concepts_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
            edit_concepts_embeds = edit_concepts_embeds.repeat(1, num_images_per_prompt, 1)
            edit_concepts_embeds = edit_concepts_embeds.view(bs_embed_edit * num_images_per_prompt, seq_len, -1)

        negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
            bs_embed * num_images_per_prompt, -1
        )

        if enable_edit_guidance:
            editing_pooled_prompt_embeds = editing_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
                bs_embed_edit * num_images_per_prompt, -1
            )

        if self.text_encoder is not None:
            if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder, lora_scale)

        if self.text_encoder_2 is not None:
            if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder_2, lora_scale)

        return (
            negative_prompt_embeds,
            edit_concepts_embeds,
            negative_pooled_prompt_embeds,
            editing_pooled_prompt_embeds,
            num_edit_tokens,
        )

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, eta, generator=None):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(
        self,
        negative_prompt=None,
        negative_prompt_2=None,
        negative_prompt_embeds=None,
        negative_pooled_prompt_embeds=None,
    ):
        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )
        elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
            raise ValueError(
                "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
            )

    # Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
    def prepare_latents(self, device, latents):
        latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    def _get_add_time_ids(
        self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
    ):
        add_time_ids = list(original_size + crops_coords_top_left + target_size)

        passed_add_embed_dim = (
            self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
        )
        expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features

        if expected_add_embed_dim != passed_add_embed_dim:
            raise ValueError(
                f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
            )

        add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
        return add_time_ids

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
    def upcast_vae(self):
        dtype = self.vae.dtype
        self.vae.to(dtype=torch.float32)
        use_torch_2_0_or_xformers = isinstance(
            self.vae.decoder.mid_block.attentions[0].processor,
            (
                AttnProcessor2_0,
                XFormersAttnProcessor,
            ),
        )
        # if xformers or torch_2_0 is used attention block does not need
        # to be in float32 which can save lots of memory
        if use_torch_2_0_or_xformers:
            self.vae.post_quant_conv.to(dtype)
            self.vae.decoder.conv_in.to(dtype)
            self.vae.decoder.mid_block.to(dtype)

    # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
    def get_guidance_scale_embedding(
        self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
    ) -> torch.Tensor:
        """
        See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298

        Args:
            w (`torch.Tensor`):
                Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
            embedding_dim (`int`, *optional*, defaults to 512):
                Dimension of the embeddings to generate.
            dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
                Data type of the generated embeddings.

        Returns:
            `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
        """
        assert len(w.shape) == 1
        w = w * 1000.0

        half_dim = embedding_dim // 2
        emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
        emb = w.to(dtype)[:, None] * emb[None, :]
        emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
        if embedding_dim % 2 == 1:  # zero pad
            emb = torch.nn.functional.pad(emb, (0, 1))
        assert emb.shape == (w.shape[0], embedding_dim)
        return emb

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def guidance_rescale(self):
        return self._guidance_rescale

    @property
    def clip_skip(self):
        return self._clip_skip

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None

    @property
    def cross_attention_kwargs(self):
        return self._cross_attention_kwargs

    @property
    def denoising_end(self):
        return self._denoising_end

    @property
    def num_timesteps(self):
        return self._num_timesteps

    def enable_vae_slicing(self):
        r"""
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.vae.enable_slicing()

    def disable_vae_slicing(self):
        r"""
        Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_slicing()

    def enable_vae_tiling(self):
        r"""
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.
        """
        self.vae.enable_tiling()

    def disable_vae_tiling(self):
        r"""
        Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_tiling()

    # Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LEditsPPPipelineStableDiffusion.prepare_unet
    def prepare_unet(self, attention_store, PnP: bool = False):
        attn_procs = {}
        for name in self.unet.attn_processors.keys():
            if name.startswith("mid_block"):
                place_in_unet = "mid"
            elif name.startswith("up_blocks"):
                place_in_unet = "up"
            elif name.startswith("down_blocks"):
                place_in_unet = "down"
            else:
                continue

            if "attn2" in name and place_in_unet != "mid":
                attn_procs[name] = LEDITSCrossAttnProcessor(
                    attention_store=attention_store,
                    place_in_unet=place_in_unet,
                    pnp=PnP,
                    editing_prompts=self.enabled_editing_prompts,
                )
            else:
                attn_procs[name] = AttnProcessor()

        self.unet.set_attn_processor(attn_procs)

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        denoising_end: Optional[float] = None,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        negative_prompt_2: Optional[Union[str, List[str]]] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
        ip_adapter_image: Optional[PipelineImageInput] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        guidance_rescale: float = 0.0,
        crops_coords_top_left: Tuple[int, int] = (0, 0),
        target_size: Optional[Tuple[int, int]] = None,
        editing_prompt: Optional[Union[str, List[str]]] = None,
        editing_prompt_embeddings: Optional[torch.Tensor] = None,
        editing_pooled_prompt_embeds: Optional[torch.Tensor] = None,
        reverse_editing_direction: Optional[Union[bool, List[bool]]] = False,
        edit_guidance_scale: Optional[Union[float, List[float]]] = 5,
        edit_warmup_steps: Optional[Union[int, List[int]]] = 0,
        edit_cooldown_steps: Optional[Union[int, List[int]]] = None,
        edit_threshold: Optional[Union[float, List[float]]] = 0.9,
        sem_guidance: Optional[List[torch.Tensor]] = None,
        use_cross_attn_mask: bool = False,
        use_intersect_mask: bool = False,
        user_mask: Optional[torch.Tensor] = None,
        attn_store_steps: Optional[List[int]] = [],
        store_averaged_over_steps: bool = True,
        clip_skip: Optional[int] = None,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        **kwargs,
    ):
        r"""
        The call function to the pipeline for editing. The
        [`~pipelines.ledits_pp.LEditsPPPipelineStableDiffusionXL.invert`] method has to be called beforehand. Edits
        will always be performed for the last inverted image(s).

        Args:
            denoising_end (`float`, *optional*):
                When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
                completed before it is intentionally prematurely terminated. As a result, the returned sample will
                still retain a substantial amount of noise as determined by the discrete timesteps selected by the
                scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
                "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            negative_prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
                `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
            negative_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
                input argument.
            ip_adapter_image: (`PipelineImageInput`, *optional*):
                Optional image input to work with IP Adapters.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
                of a plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            guidance_rescale (`float`, *optional*, defaults to 0.7):
                Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
                Flawed](https://huggingface.co/papers/2305.08891) `guidance_scale` is defined as `φ` in equation 16. of
                [Common Diffusion Noise Schedules and Sample Steps are
                Flawed](https://huggingface.co/papers/2305.08891). Guidance rescale factor should fix overexposure when
                using zero terminal SNR.
            crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
                `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
                `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
                `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
            target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
                For most cases, `target_size` should be set to the desired height and width of the generated image. If
                not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in
                section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
            editing_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. The image is reconstructed by setting
                `editing_prompt = None`. Guidance direction of prompt should be specified via
                `reverse_editing_direction`.
            editing_prompt_embeddings (`torch.Tensor`, *optional*):
                Pre-generated edit text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
                If not provided, editing_prompt_embeddings will be generated from `editing_prompt` input argument.
            editing_pooled_prompt_embeddings (`torch.Tensor`, *optional*):
                Pre-generated pooled edit text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, editing_prompt_embeddings will be generated from `editing_prompt` input
                argument.
            reverse_editing_direction (`bool` or `List[bool]`, *optional*, defaults to `False`):
                Whether the corresponding prompt in `editing_prompt` should be increased or decreased.
            edit_guidance_scale (`float` or `List[float]`, *optional*, defaults to 5):
                Guidance scale for guiding the image generation. If provided as list values should correspond to
                `editing_prompt`. `edit_guidance_scale` is defined as `s_e` of equation 12 of [LEDITS++
                Paper](https://huggingface.co/papers/2301.12247).
            edit_warmup_steps (`float` or `List[float]`, *optional*, defaults to 10):
                Number of diffusion steps (for each prompt) for which guidance is not applied.
            edit_cooldown_steps (`float` or `List[float]`, *optional*, defaults to `None`):
                Number of diffusion steps (for each prompt) after which guidance is no longer applied.
            edit_threshold (`float` or `List[float]`, *optional*, defaults to 0.9):
                Masking threshold of guidance. Threshold should be proportional to the image region that is modified.
                'edit_threshold' is defined as 'λ' of equation 12 of [LEDITS++
                Paper](https://huggingface.co/papers/2301.12247).
            sem_guidance (`List[torch.Tensor]`, *optional*):
                List of pre-generated guidance vectors to be applied at generation. Length of the list has to
                correspond to `num_inference_steps`.
            use_cross_attn_mask:
                Whether cross-attention masks are used. Cross-attention masks are always used when use_intersect_mask
                is set to true. Cross-attention masks are defined as 'M^1' of equation 12 of [LEDITS++
                paper](https://huggingface.co/papers/2311.16711).
            use_intersect_mask:
                Whether the masking term is calculated as intersection of cross-attention masks and masks derived from
                the noise estimate. Cross-attention mask are defined as 'M^1' and masks derived from the noise estimate
                are defined as 'M^2' of equation 12 of [LEDITS++ paper](https://huggingface.co/papers/2311.16711).
            user_mask:
                User-provided mask for even better control over the editing process. This is helpful when LEDITS++'s
                implicit masks do not meet user preferences.
            attn_store_steps:
                Steps for which the attention maps are stored in the AttentionStore. Just for visualization purposes.
            store_averaged_over_steps:
                Whether the attention maps for the 'attn_store_steps' are stored averaged over the diffusion steps. If
                False, attention maps for each step are stores separately. Just for visualization purposes.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
            callback_on_step_end (`Callable`, *optional*):
                A function that calls at the end of each denoising steps during the inference. The function is called
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
                `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeline class.

        Examples:

        Returns:
            [`~pipelines.ledits_pp.LEditsPPDiffusionPipelineOutput`] or `tuple`:
            [`~pipelines.ledits_pp.LEditsPPDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When
            returning a tuple, the first element is a list with the generated images.
        """
        if self.inversion_steps is None:
            raise ValueError(
                "You need to invert an input image first before calling the pipeline. The `invert` method has to be called beforehand. Edits will always be performed for the last inverted image(s)."
            )

        eta = self.eta
        num_images_per_prompt = 1
        latents = self.init_latents

        zs = self.zs
        self.scheduler.set_timesteps(len(self.scheduler.timesteps))

        if use_intersect_mask:
            use_cross_attn_mask = True

        if use_cross_attn_mask:
            self.smoothing = LeditsGaussianSmoothing(self.device)

        if user_mask is not None:
            user_mask = user_mask.to(self.device)

        # TODO: Check inputs
        # 1. Check inputs. Raise error if not correct
        # self.check_inputs(
        #    callback_steps,
        #    negative_prompt,
        #    negative_prompt_2,
        #    prompt_embeds,
        #    negative_prompt_embeds,
        #    pooled_prompt_embeds,
        #    negative_pooled_prompt_embeds,
        # )
        self._guidance_rescale = guidance_rescale
        self._clip_skip = clip_skip
        self._cross_attention_kwargs = cross_attention_kwargs
        self._denoising_end = denoising_end

        # 2. Define call parameters
        batch_size = self.batch_size

        device = self._execution_device

        if editing_prompt:
            enable_edit_guidance = True
            if isinstance(editing_prompt, str):
                editing_prompt = [editing_prompt]
            self.enabled_editing_prompts = len(editing_prompt)
        elif editing_prompt_embeddings is not None:
            enable_edit_guidance = True
            self.enabled_editing_prompts = editing_prompt_embeddings.shape[0]
        else:
            self.enabled_editing_prompts = 0
            enable_edit_guidance = False

        # 3. Encode input prompt
        text_encoder_lora_scale = (
            cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
        )
        (
            prompt_embeds,
            edit_prompt_embeds,
            negative_pooled_prompt_embeds,
            pooled_edit_embeds,
            num_edit_tokens,
        ) = self.encode_prompt(
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            negative_prompt=negative_prompt,
            negative_prompt_2=negative_prompt_2,
            negative_prompt_embeds=negative_prompt_embeds,
            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
            lora_scale=text_encoder_lora_scale,
            clip_skip=self.clip_skip,
            enable_edit_guidance=enable_edit_guidance,
            editing_prompt=editing_prompt,
            editing_prompt_embeds=editing_prompt_embeddings,
            editing_pooled_prompt_embeds=editing_pooled_prompt_embeds,
        )

        # 4. Prepare timesteps
        # self.scheduler.set_timesteps(num_inference_steps, device=device)

        timesteps = self.inversion_steps
        t_to_idx = {int(v): k for k, v in enumerate(timesteps)}

        if use_cross_attn_mask:
            self.attention_store = LeditsAttentionStore(
                average=store_averaged_over_steps,
                batch_size=batch_size,
                max_size=(latents.shape[-2] / 4.0) * (latents.shape[-1] / 4.0),
                max_resolution=None,
            )
            self.prepare_unet(self.attention_store)
            resolution = latents.shape[-2:]
            att_res = (int(resolution[0] / 4), int(resolution[1] / 4))

        # 5. Prepare latent variables
        latents = self.prepare_latents(device=device, latents=latents)

        # 6. Prepare extra step kwargs.
        extra_step_kwargs = self.prepare_extra_step_kwargs(eta)

        if self.text_encoder_2 is None:
            text_encoder_projection_dim = int(negative_pooled_prompt_embeds.shape[-1])
        else:
            text_encoder_projection_dim = self.text_encoder_2.config.projection_dim

        # 7. Prepare added time ids & embeddings
        add_text_embeds = negative_pooled_prompt_embeds
        add_time_ids = self._get_add_time_ids(
            self.size,
            crops_coords_top_left,
            self.size,
            dtype=negative_pooled_prompt_embeds.dtype,
            text_encoder_projection_dim=text_encoder_projection_dim,
        )

        if enable_edit_guidance:
            prompt_embeds = torch.cat([prompt_embeds, edit_prompt_embeds], dim=0)
            add_text_embeds = torch.cat([add_text_embeds, pooled_edit_embeds], dim=0)
            edit_concepts_time_ids = add_time_ids.repeat(edit_prompt_embeds.shape[0], 1)
            add_time_ids = torch.cat([add_time_ids, edit_concepts_time_ids], dim=0)
            self.text_cross_attention_maps = [editing_prompt] if isinstance(editing_prompt, str) else editing_prompt

        prompt_embeds = prompt_embeds.to(device)
        add_text_embeds = add_text_embeds.to(device)
        add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)

        if ip_adapter_image is not None:
            # TODO: fix image encoding
            image_embeds, negative_image_embeds = self.encode_image(ip_adapter_image, device, num_images_per_prompt)
            if self.do_classifier_free_guidance:
                image_embeds = torch.cat([negative_image_embeds, image_embeds])
                image_embeds = image_embeds.to(device)

        # 8. Denoising loop
        self.sem_guidance = None
        self.activation_mask = None

        if (
            self.denoising_end is not None
            and isinstance(self.denoising_end, float)
            and self.denoising_end > 0
            and self.denoising_end < 1
        ):
            discrete_timestep_cutoff = int(
                round(
                    self.scheduler.config.num_train_timesteps
                    - (self.denoising_end * self.scheduler.config.num_train_timesteps)
                )
            )
            num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
            timesteps = timesteps[:num_inference_steps]

        # 9. Optionally get Guidance Scale Embedding
        timestep_cond = None
        if self.unet.config.time_cond_proj_dim is not None:
            guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
            timestep_cond = self.get_guidance_scale_embedding(
                guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
            ).to(device=device, dtype=latents.dtype)

        self._num_timesteps = len(timesteps)
        with self.progress_bar(total=self._num_timesteps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * (1 + self.enabled_editing_prompts))
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
                # predict the noise residual
                added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
                if ip_adapter_image is not None:
                    added_cond_kwargs["image_embeds"] = image_embeds
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    cross_attention_kwargs=cross_attention_kwargs,
                    added_cond_kwargs=added_cond_kwargs,
                    return_dict=False,
                )[0]

                noise_pred_out = noise_pred.chunk(1 + self.enabled_editing_prompts)  # [b,4, 64, 64]
                noise_pred_uncond = noise_pred_out[0]
                noise_pred_edit_concepts = noise_pred_out[1:]

                noise_guidance_edit = torch.zeros(
                    noise_pred_uncond.shape,
                    device=self.device,
                    dtype=noise_pred_uncond.dtype,
                )

                if sem_guidance is not None and len(sem_guidance) > i:
                    noise_guidance_edit += sem_guidance[i].to(self.device)

                elif enable_edit_guidance:
                    if self.activation_mask is None:
                        self.activation_mask = torch.zeros(
                            (len(timesteps), self.enabled_editing_prompts, *noise_pred_edit_concepts[0].shape)
                        )
                    if self.sem_guidance is None:
                        self.sem_guidance = torch.zeros((len(timesteps), *noise_pred_uncond.shape))

                    # noise_guidance_edit = torch.zeros_like(noise_guidance)
                    for c, noise_pred_edit_concept in enumerate(noise_pred_edit_concepts):
                        if isinstance(edit_warmup_steps, list):
                            edit_warmup_steps_c = edit_warmup_steps[c]
                        else:
                            edit_warmup_steps_c = edit_warmup_steps
                        if i < edit_warmup_steps_c:
                            continue

                        if isinstance(edit_guidance_scale, list):
                            edit_guidance_scale_c = edit_guidance_scale[c]
                        else:
                            edit_guidance_scale_c = edit_guidance_scale

                        if isinstance(edit_threshold, list):
                            edit_threshold_c = edit_threshold[c]
                        else:
                            edit_threshold_c = edit_threshold
                        if isinstance(reverse_editing_direction, list):
                            reverse_editing_direction_c = reverse_editing_direction[c]
                        else:
                            reverse_editing_direction_c = reverse_editing_direction

                        if isinstance(edit_cooldown_steps, list):
                            edit_cooldown_steps_c = edit_cooldown_steps[c]
                        elif edit_cooldown_steps is None:
                            edit_cooldown_steps_c = i + 1
                        else:
                            edit_cooldown_steps_c = edit_cooldown_steps

                        if i >= edit_cooldown_steps_c:
                            continue

                        noise_guidance_edit_tmp = noise_pred_edit_concept - noise_pred_uncond

                        if reverse_editing_direction_c:
                            noise_guidance_edit_tmp = noise_guidance_edit_tmp * -1

                        noise_guidance_edit_tmp = noise_guidance_edit_tmp * edit_guidance_scale_c

                        if user_mask is not None:
                            noise_guidance_edit_tmp = noise_guidance_edit_tmp * user_mask

                        if use_cross_attn_mask:
                            out = self.attention_store.aggregate_attention(
                                attention_maps=self.attention_store.step_store,
                                prompts=self.text_cross_attention_maps,
                                res=att_res,
                                from_where=["up", "down"],
                                is_cross=True,
                                select=self.text_cross_attention_maps.index(editing_prompt[c]),
                            )
                            attn_map = out[:, :, :, 1 : 1 + num_edit_tokens[c]]  # 0 -> startoftext

                            # average over all tokens
                            if attn_map.shape[3] != num_edit_tokens[c]:
                                raise ValueError(
                                    f"Incorrect shape of attention_map. Expected size {num_edit_tokens[c]}, but found {attn_map.shape[3]}!"
                                )
                            attn_map = torch.sum(attn_map, dim=3)

                            # gaussian_smoothing
                            attn_map = F.pad(attn_map.unsqueeze(1), (1, 1, 1, 1), mode="reflect")
                            attn_map = self.smoothing(attn_map).squeeze(1)

                            # torch.quantile function expects float32
                            if attn_map.dtype == torch.float32:
                                tmp = torch.quantile(attn_map.flatten(start_dim=1), edit_threshold_c, dim=1)
                            else:
                                tmp = torch.quantile(
                                    attn_map.flatten(start_dim=1).to(torch.float32), edit_threshold_c, dim=1
                                ).to(attn_map.dtype)
                            attn_mask = torch.where(
                                attn_map >= tmp.unsqueeze(1).unsqueeze(1).repeat(1, *att_res), 1.0, 0.0
                            )

                            # resolution must match latent space dimension
                            attn_mask = F.interpolate(
                                attn_mask.unsqueeze(1),
                                noise_guidance_edit_tmp.shape[-2:],  # 64,64
                            ).repeat(1, 4, 1, 1)
                            self.activation_mask[i, c] = attn_mask.detach().cpu()
                            if not use_intersect_mask:
                                noise_guidance_edit_tmp = noise_guidance_edit_tmp * attn_mask

                        if use_intersect_mask:
                            noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp)
                            noise_guidance_edit_tmp_quantile = torch.sum(
                                noise_guidance_edit_tmp_quantile, dim=1, keepdim=True
                            )
                            noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat(
                                1, self.unet.config.in_channels, 1, 1
                            )

                            # torch.quantile function expects float32
                            if noise_guidance_edit_tmp_quantile.dtype == torch.float32:
                                tmp = torch.quantile(
                                    noise_guidance_edit_tmp_quantile.flatten(start_dim=2),
                                    edit_threshold_c,
                                    dim=2,
                                    keepdim=False,
                                )
                            else:
                                tmp = torch.quantile(
                                    noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32),
                                    edit_threshold_c,
                                    dim=2,
                                    keepdim=False,
                                ).to(noise_guidance_edit_tmp_quantile.dtype)

                            intersect_mask = (
                                torch.where(
                                    noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None],
                                    torch.ones_like(noise_guidance_edit_tmp),
                                    torch.zeros_like(noise_guidance_edit_tmp),
                                )
                                * attn_mask
                            )

                            self.activation_mask[i, c] = intersect_mask.detach().cpu()

                            noise_guidance_edit_tmp = noise_guidance_edit_tmp * intersect_mask

                        elif not use_cross_attn_mask:
                            # calculate quantile
                            noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp)
                            noise_guidance_edit_tmp_quantile = torch.sum(
                                noise_guidance_edit_tmp_quantile, dim=1, keepdim=True
                            )
                            noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat(1, 4, 1, 1)

                            # torch.quantile function expects float32
                            if noise_guidance_edit_tmp_quantile.dtype == torch.float32:
                                tmp = torch.quantile(
                                    noise_guidance_edit_tmp_quantile.flatten(start_dim=2),
                                    edit_threshold_c,
                                    dim=2,
                                    keepdim=False,
                                )
                            else:
                                tmp = torch.quantile(
                                    noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32),
                                    edit_threshold_c,
                                    dim=2,
                                    keepdim=False,
                                ).to(noise_guidance_edit_tmp_quantile.dtype)

                            self.activation_mask[i, c] = (
                                torch.where(
                                    noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None],
                                    torch.ones_like(noise_guidance_edit_tmp),
                                    torch.zeros_like(noise_guidance_edit_tmp),
                                )
                                .detach()
                                .cpu()
                            )

                            noise_guidance_edit_tmp = torch.where(
                                noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None],
                                noise_guidance_edit_tmp,
                                torch.zeros_like(noise_guidance_edit_tmp),
                            )

                        noise_guidance_edit += noise_guidance_edit_tmp

                    self.sem_guidance[i] = noise_guidance_edit.detach().cpu()

                noise_pred = noise_pred_uncond + noise_guidance_edit

                # compute the previous noisy sample x_t -> x_t-1
                if enable_edit_guidance and self.guidance_rescale > 0.0:
                    # Based on 3.4. in https://huggingface.co/papers/2305.08891
                    noise_pred = rescale_noise_cfg(
                        noise_pred,
                        noise_pred_edit_concepts.mean(dim=0, keepdim=False),
                        guidance_rescale=self.guidance_rescale,
                    )

                idx = t_to_idx[int(t)]
                latents = self.scheduler.step(
                    noise_pred, t, latents, variance_noise=zs[idx], **extra_step_kwargs, return_dict=False
                )[0]

                # step callback
                if use_cross_attn_mask:
                    store_step = i in attn_store_steps
                    self.attention_store.between_steps(store_step)

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
                    add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
                    negative_pooled_prompt_embeds = callback_outputs.pop(
                        "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
                    )
                    add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
                    # negative_add_time_ids = callback_outputs.pop("negative_add_time_ids", negative_add_time_ids)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > 0 and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()

                if XLA_AVAILABLE:
                    xm.mark_step()

        if not output_type == "latent":
            # make sure the VAE is in float32 mode, as it overflows in float16
            needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast

            if needs_upcasting:
                self.upcast_vae()
                latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)

            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]

            # cast back to fp16 if needed
            if needs_upcasting:
                self.vae.to(dtype=torch.float16)
        else:
            image = latents

        if not output_type == "latent":
            # apply watermark if available
            if self.watermark is not None:
                image = self.watermark.apply_watermark(image)

            image = self.image_processor.postprocess(image, output_type=output_type)

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (image,)

        return LEditsPPDiffusionPipelineOutput(images=image, nsfw_content_detected=None)

    @torch.no_grad()
    # Modified from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LEditsPPPipelineStableDiffusion.encode_image
    def encode_image(self, image, dtype=None, height=None, width=None, resize_mode="default", crops_coords=None):
        image = self.image_processor.preprocess(
            image=image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
        )
        height, width = image.shape[-2:]
        if height % 32 != 0 or width % 32 != 0:
            raise ValueError(
                "Image height and width must be a factor of 32. "
                "Consider down-sampling the input using the `height` and `width` parameters"
            )
        resized = self.image_processor.postprocess(image=image, output_type="pil")

        if max(image.shape[-2:]) > self.vae.config["sample_size"] * 1.5:
            logger.warning(
                "Your input images far exceed the default resolution of the underlying diffusion model. "
                "The output images may contain severe artifacts! "
                "Consider down-sampling the input using the `height` and `width` parameters"
            )
        image = image.to(self.device, dtype=dtype)
        needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast

        if needs_upcasting:
            image = image.float()
            self.upcast_vae()

        x0 = self.vae.encode(image).latent_dist.mode()
        x0 = x0.to(dtype)
        # cast back to fp16 if needed
        if needs_upcasting:
            self.vae.to(dtype=torch.float16)

        x0 = self.vae.config.scaling_factor * x0
        return x0, resized

    @torch.no_grad()
    def invert(
        self,
        image: PipelineImageInput,
        source_prompt: str = "",
        source_guidance_scale=3.5,
        negative_prompt: str = None,
        negative_prompt_2: str = None,
        num_inversion_steps: int = 50,
        skip: float = 0.15,
        generator: Optional[torch.Generator] = None,
        crops_coords_top_left: Tuple[int, int] = (0, 0),
        num_zero_noise_steps: int = 3,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        resize_mode: Optional[str] = "default",
        crops_coords: Optional[Tuple[int, int, int, int]] = None,
    ):
        r"""
        The function to the pipeline for image inversion as described by the [LEDITS++
        Paper](https://huggingface.co/papers/2301.12247). If the scheduler is set to [`~schedulers.DDIMScheduler`] the
        inversion proposed by [edit-friendly DPDM](https://huggingface.co/papers/2304.06140) will be performed instead.

        Args:
            image (`PipelineImageInput`):
                Input for the image(s) that are to be edited. Multiple input images have to default to the same aspect
                ratio.
            source_prompt (`str`, defaults to `""`):
                Prompt describing the input image that will be used for guidance during inversion. Guidance is disabled
                if the `source_prompt` is `""`.
            source_guidance_scale (`float`, defaults to `3.5`):
                Strength of guidance during inversion.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            negative_prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
                `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
            num_inversion_steps (`int`, defaults to `50`):
                Number of total performed inversion steps after discarding the initial `skip` steps.
            skip (`float`, defaults to `0.15`):
                Portion of initial steps that will be ignored for inversion and subsequent generation. Lower values
                will lead to stronger changes to the input image. `skip` has to be between `0` and `1`.
            generator (`torch.Generator`, *optional*):
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make inversion
                deterministic.
            crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
                `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
                `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
                `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
            num_zero_noise_steps (`int`, defaults to `3`):
                Number of final diffusion steps that will not renoise the current image. If no steps are set to zero
                SD-XL in combination with [`DPMSolverMultistepScheduler`] will produce noise artifacts.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).

        Returns:
            [`~pipelines.ledits_pp.LEditsPPInversionPipelineOutput`]: Output will contain the resized input image(s)
            and respective VAE reconstruction(s).
        """
        if height is not None and height % 32 != 0 or width is not None and width % 32 != 0:
            raise ValueError("height and width must be a factor of 32.")

        # Reset attn processor, we do not want to store attn maps during inversion
        self.unet.set_attn_processor(AttnProcessor())

        self.eta = 1.0

        self.scheduler.config.timestep_spacing = "leading"
        self.scheduler.set_timesteps(int(num_inversion_steps * (1 + skip)))
        self.inversion_steps = self.scheduler.timesteps[-num_inversion_steps:]
        timesteps = self.inversion_steps

        num_images_per_prompt = 1

        device = self._execution_device

        # 0. Ensure that only uncond embedding is used if prompt = ""
        if source_prompt == "":
            # noise pred should only be noise_pred_uncond
            source_guidance_scale = 0.0
            do_classifier_free_guidance = False
        else:
            do_classifier_free_guidance = source_guidance_scale > 1.0

        # 1. prepare image
        x0, resized = self.encode_image(
            image,
            dtype=self.text_encoder_2.dtype,
            height=height,
            width=width,
            resize_mode=resize_mode,
            crops_coords=crops_coords,
        )
        width = x0.shape[2] * self.vae_scale_factor
        height = x0.shape[3] * self.vae_scale_factor
        self.size = (height, width)

        self.batch_size = x0.shape[0]

        # 2. get embeddings
        text_encoder_lora_scale = (
            cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
        )

        if isinstance(source_prompt, str):
            source_prompt = [source_prompt] * self.batch_size

        (
            negative_prompt_embeds,
            prompt_embeds,
            negative_pooled_prompt_embeds,
            edit_pooled_prompt_embeds,
            _,
        ) = self.encode_prompt(
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            negative_prompt=negative_prompt,
            negative_prompt_2=negative_prompt_2,
            editing_prompt=source_prompt,
            lora_scale=text_encoder_lora_scale,
            enable_edit_guidance=do_classifier_free_guidance,
        )
        if self.text_encoder_2 is None:
            text_encoder_projection_dim = int(negative_pooled_prompt_embeds.shape[-1])
        else:
            text_encoder_projection_dim = self.text_encoder_2.config.projection_dim

        # 3. Prepare added time ids & embeddings
        add_text_embeds = negative_pooled_prompt_embeds
        add_time_ids = self._get_add_time_ids(
            self.size,
            crops_coords_top_left,
            self.size,
            dtype=negative_prompt_embeds.dtype,
            text_encoder_projection_dim=text_encoder_projection_dim,
        )

        if do_classifier_free_guidance:
            negative_prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
            add_text_embeds = torch.cat([add_text_embeds, edit_pooled_prompt_embeds], dim=0)
            add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)

        negative_prompt_embeds = negative_prompt_embeds.to(device)

        add_text_embeds = add_text_embeds.to(device)
        add_time_ids = add_time_ids.to(device).repeat(self.batch_size * num_images_per_prompt, 1)

        # autoencoder reconstruction
        if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
            self.upcast_vae()
            x0_tmp = x0.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
            image_rec = self.vae.decode(
                x0_tmp / self.vae.config.scaling_factor, return_dict=False, generator=generator
            )[0]
        elif self.vae.config.force_upcast:
            x0_tmp = x0.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
            image_rec = self.vae.decode(
                x0_tmp / self.vae.config.scaling_factor, return_dict=False, generator=generator
            )[0]
        else:
            image_rec = self.vae.decode(x0 / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0]

        image_rec = self.image_processor.postprocess(image_rec, output_type="pil")

        # 5. find zs and xts
        variance_noise_shape = (num_inversion_steps, *x0.shape)

        # intermediate latents
        t_to_idx = {int(v): k for k, v in enumerate(timesteps)}
        xts = torch.zeros(size=variance_noise_shape, device=self.device, dtype=negative_prompt_embeds.dtype)

        for t in reversed(timesteps):
            idx = num_inversion_steps - t_to_idx[int(t)] - 1
            noise = randn_tensor(shape=x0.shape, generator=generator, device=self.device, dtype=x0.dtype)
            xts[idx] = self.scheduler.add_noise(x0, noise, t.unsqueeze(0))
        xts = torch.cat([x0.unsqueeze(0), xts], dim=0)

        # noise maps
        zs = torch.zeros(size=variance_noise_shape, device=self.device, dtype=negative_prompt_embeds.dtype)

        self.scheduler.set_timesteps(len(self.scheduler.timesteps))

        for t in self.progress_bar(timesteps):
            idx = num_inversion_steps - t_to_idx[int(t)] - 1
            # 1. predict noise residual
            xt = xts[idx + 1]

            latent_model_input = torch.cat([xt] * 2) if do_classifier_free_guidance else xt
            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

            added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}

            noise_pred = self.unet(
                latent_model_input,
                t,
                encoder_hidden_states=negative_prompt_embeds,
                cross_attention_kwargs=cross_attention_kwargs,
                added_cond_kwargs=added_cond_kwargs,
                return_dict=False,
            )[0]

            # 2. perform guidance
            if do_classifier_free_guidance:
                noise_pred_out = noise_pred.chunk(2)
                noise_pred_uncond, noise_pred_text = noise_pred_out[0], noise_pred_out[1]
                noise_pred = noise_pred_uncond + source_guidance_scale * (noise_pred_text - noise_pred_uncond)

            xtm1 = xts[idx]
            z, xtm1_corrected = compute_noise(self.scheduler, xtm1, xt, t, noise_pred, self.eta)
            zs[idx] = z

            # correction to avoid error accumulation
            xts[idx] = xtm1_corrected

        self.init_latents = xts[-1]
        zs = zs.flip(0)

        if num_zero_noise_steps > 0:
            zs[-num_zero_noise_steps:] = torch.zeros_like(zs[-num_zero_noise_steps:])
        self.zs = zs
        return LEditsPPInversionPipelineOutput(images=resized, vae_reconstruction_images=image_rec)


# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
    r"""
    Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
    Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
    Flawed](https://huggingface.co/papers/2305.08891).

    Args:
        noise_cfg (`torch.Tensor`):
            The predicted noise tensor for the guided diffusion process.
        noise_pred_text (`torch.Tensor`):
            The predicted noise tensor for the text-guided diffusion process.
        guidance_rescale (`float`, *optional*, defaults to 0.0):
            A rescale factor applied to the noise predictions.

    Returns:
        noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor.
    """
    std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
    std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
    # rescale the results from guidance (fixes overexposure)
    noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
    # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
    noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
    return noise_cfg


# Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.compute_noise_ddim
def compute_noise_ddim(scheduler, prev_latents, latents, timestep, noise_pred, eta):
    # 1. get previous step value (=t-1)
    prev_timestep = timestep - scheduler.config.num_train_timesteps // scheduler.num_inference_steps

    # 2. compute alphas, betas
    alpha_prod_t = scheduler.alphas_cumprod[timestep]
    alpha_prod_t_prev = (
        scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else scheduler.final_alpha_cumprod
    )

    beta_prod_t = 1 - alpha_prod_t

    # 3. compute predicted original sample from predicted noise also called
    # "predicted x_0" of formula (12) from https://huggingface.co/papers/2010.02502
    pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)

    # 4. Clip "predicted x_0"
    if scheduler.config.clip_sample:
        pred_original_sample = torch.clamp(pred_original_sample, -1, 1)

    # 5. compute variance: "sigma_t(η)" -> see formula (16)
    # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
    variance = scheduler._get_variance(timestep, prev_timestep)
    std_dev_t = eta * variance ** (0.5)

    # 6. compute "direction pointing to x_t" of formula (12) from https://huggingface.co/papers/2010.02502
    pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * noise_pred

    # modified so that updated xtm1 is returned as well (to avoid error accumulation)
    mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
    if variance > 0.0:
        noise = (prev_latents - mu_xt) / (variance ** (0.5) * eta)
    else:
        noise = torch.tensor([0.0]).to(latents.device)

    return noise, mu_xt + (eta * variance**0.5) * noise


# Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.compute_noise_sde_dpm_pp_2nd
def compute_noise_sde_dpm_pp_2nd(scheduler, prev_latents, latents, timestep, noise_pred, eta):
    def first_order_update(model_output, sample):  # timestep, prev_timestep, sample):
        sigma_t, sigma_s = scheduler.sigmas[scheduler.step_index + 1], scheduler.sigmas[scheduler.step_index]
        alpha_t, sigma_t = scheduler._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s, sigma_s = scheduler._sigma_to_alpha_sigma_t(sigma_s)
        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s = torch.log(alpha_s) - torch.log(sigma_s)

        h = lambda_t - lambda_s

        mu_xt = (sigma_t / sigma_s * torch.exp(-h)) * sample + (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output

        mu_xt = scheduler.dpm_solver_first_order_update(
            model_output=model_output, sample=sample, noise=torch.zeros_like(sample)
        )

        sigma = sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h))
        if sigma > 0.0:
            noise = (prev_latents - mu_xt) / sigma
        else:
            noise = torch.tensor([0.0]).to(sample.device)

        prev_sample = mu_xt + sigma * noise
        return noise, prev_sample

    def second_order_update(model_output_list, sample):  # timestep_list, prev_timestep, sample):
        sigma_t, sigma_s0, sigma_s1 = (
            scheduler.sigmas[scheduler.step_index + 1],
            scheduler.sigmas[scheduler.step_index],
            scheduler.sigmas[scheduler.step_index - 1],
        )

        alpha_t, sigma_t = scheduler._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = scheduler._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = scheduler._sigma_to_alpha_sigma_t(sigma_s1)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
        lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)

        m0, m1 = model_output_list[-1], model_output_list[-2]

        h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
        r0 = h_0 / h
        D0, D1 = m0, (1.0 / r0) * (m0 - m1)

        mu_xt = (
            (sigma_t / sigma_s0 * torch.exp(-h)) * sample
            + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
            + 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1
        )

        sigma = sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h))
        if sigma > 0.0:
            noise = (prev_latents - mu_xt) / sigma
        else:
            noise = torch.tensor([0.0]).to(sample.device)

        prev_sample = mu_xt + sigma * noise

        return noise, prev_sample

    if scheduler.step_index is None:
        scheduler._init_step_index(timestep)

    model_output = scheduler.convert_model_output(model_output=noise_pred, sample=latents)
    for i in range(scheduler.config.solver_order - 1):
        scheduler.model_outputs[i] = scheduler.model_outputs[i + 1]
    scheduler.model_outputs[-1] = model_output

    if scheduler.lower_order_nums < 1:
        noise, prev_sample = first_order_update(model_output, latents)
    else:
        noise, prev_sample = second_order_update(scheduler.model_outputs, latents)

    if scheduler.lower_order_nums < scheduler.config.solver_order:
        scheduler.lower_order_nums += 1

    # upon completion increase step index by one
    scheduler._step_index += 1

    return noise, prev_sample


# Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.compute_noise
def compute_noise(scheduler, *args):
    if isinstance(scheduler, DDIMScheduler):
        return compute_noise_ddim(scheduler, *args)
    elif (
        isinstance(scheduler, DPMSolverMultistepScheduler)
        and scheduler.config.algorithm_type == "sde-dpmsolver++"
        and scheduler.config.solver_order == 2
    ):
        return compute_noise_sde_dpm_pp_2nd(scheduler, *args)
    else:
        raise NotImplementedError
