
    bi                         d dl mZ d dlmZmZ d dlZd dlZd dl	Z	d dl
mZmZ  ee      Ze G d de             Ze G d de             Zy)	    )	dataclass)ListUnionN)
BaseOutput
get_loggerc                   0    e Zd ZU dZej
                  ed<   y)CosmosPipelineOutputa  
    Output class for Cosmos any-to-world/video pipelines.

    Args:
        frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]):
            List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing
            denoised PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape
            `(batch_size, num_frames, channels, height, width)`.
    framesN)__name__
__module____qualname____doc__torchTensor__annotations__     e/home/cdr/jupyterlab/.venv/lib/python3.12/site-packages/diffusers/pipelines/cosmos/pipeline_output.pyr	   r	      s     LLr   r	   c                   h    e Zd ZU dZeeej                  j                     ej                  f   e
d<   y)CosmosImagePipelineOutputa^  
    Output class for Cosmos any-to-image pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
            List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
            num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
    imagesN)r   r   r   r   r   r   PILImagenpndarrayr   r   r   r   r   r      s*     $syy'344r   r   )dataclassesr   typingr   r   numpyr   	PIL.Imager   r   diffusers.utilsr   r   r   loggerr	   r   r   r   r   <module>r"      sY    !     2 
H	 :   
5
 
5 
5r   