
    bi                        d Z ddlmZ ddlmZmZ ddlZddlm	Z	 ddl
mZ ddlmZ ddlmZmZ d	d
lmZ dgZdZ G d de      Zy)a  Implementation of the Channel Dropout transform for multi-channel images.

This module provides the ChannelDropout transform, which randomly drops (sets to a fill value)
one or more channels in multi-channel images. This augmentation can help models become more
robust to missing or corrupted channel information and encourage learning from all available
channels rather than relying on a subset.
    )annotations)	AnnotatedAnyN)get_num_channels)AfterValidator)check_range_bounds)BaseTransformInitSchemaImageOnlyTransform   )channel_dropoutChannelDropout   c                  \     e Zd ZdZ G d de      Z	 	 	 d	 	 	 	 	 d fdZd	dZd
dZ xZ	S )r   a	  Randomly drop channels in the input image.

    This transform randomly selects a number of channels to drop from the input image
    and replaces them with a specified fill value. This can improve model robustness
    to missing or corrupted channels.

    The technique is conceptually similar to:
    - Dropout layers in neural networks, which randomly set input units to 0 during training.
    - CoarseDropout augmentation, which drops out regions in the spatial dimensions of the image.

    However, ChannelDropout operates on the channel dimension, effectively "dropping out"
    entire color channels or feature maps.

    Args:
        channel_drop_range (tuple[int, int]): Range from which to choose the number
            of channels to drop. The actual number will be randomly selected from
            the inclusive range [min, max]. Default: (1, 1).
        fill (float): Pixel value used to fill the dropped channels.
            Default: 0.
        p (float): Probability of applying the transform. Must be in the range
            [0, 1]. Default: 0.5.

    Raises:
        NotImplementedError: If the input image has only one channel.
        ValueError: If the upper bound of channel_drop_range is greater than or
            equal to the number of channels in the input image.

    Targets:
        image, volume

    Image types:
        uint8, float32

    Examples:
        >>> import numpy as np
        >>> import albumentations as A
        >>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
        >>> transform = A.ChannelDropout(channel_drop_range=(1, 2), fill=128, p=1.0)
        >>> result = transform(image=image)
        >>> dropped_image = result['image']
        >>> assert dropped_image.shape == image.shape
        >>> assert np.any(dropped_image != image)  # Some channels should be different

    Note:
        - The number of channels to drop is randomly chosen within the specified range.
        - Channels are randomly selected for dropping.
        - This transform is not applicable to single-channel (grayscale) images.
        - The transform will raise an error if it's not possible to drop the specified
          number of channels (e.g., trying to drop 3 channels from an RGB image).
        - This augmentation can be particularly useful for training models to be robust
          against missing or corrupted channel data in multi-spectral or hyperspectral imagery.

    c                  "    e Zd ZU ded<   ded<   y)ChannelDropout.InitSchemazGAnnotated[tuple[int, int], AfterValidator(check_range_bounds(1, None))]channel_drop_rangefloatfillN)__name__
__module____qualname____annotations__     o/home/cdr/jupyterlab/.venv/lib/python3.12/site-packages/albumentations/augmentations/dropout/channel_dropout.py
InitSchemar   R   s    ccr   r   c                B    t         |   |       || _        || _        y )N)p)super__init__r   r   )selfr   r   r   	__class__s       r   r    zChannelDropout.__init__V   s$     	1"4	r   c                0    t        ||| j                        S )aB  Apply channel dropout to the image.

        Args:
            img (np.ndarray): Image to apply channel dropout to.
            channels_to_drop (list[int]): List of channel indices to drop.
            **params (Any): Additional parameters.

        Returns:
            np.ndarray: Image with dropped channels.

        )r   r   )r!   imgchannels_to_dropparamss       r   applyzChannelDropout.applya   s     s$4dii@@r   c                6   d|v r|d   n|d   d   }t        |      }|dk(  rd}t        |      | j                  d   |k\  rd}t        |       | j                  j
                  | j                   }| j                  j                  t        |      |      }d|iS )	zGet parameters that depend on input data.

        Args:
            params (dict[str, Any]): Parameters.
            data (dict[str, Any]): Input data.

        Returns:
            dict[str, list[int]]: Dictionary with channels to drop.

        imageimagesr   r   z6Images has one channel. ChannelDropout is not defined.z,Can not drop all channels in ChannelDropout.)kr%   )r   NotImplementedErrorr   
ValueError	py_randomrandintsamplerange)r!   r&   datar)   num_channelsmsgnum_drop_channelsr%   s           r   get_params_dependent_on_dataz+ChannelDropout.get_params_dependent_on_datao   s     ")DWd8nQ6G'.1JC%c**""1%5@CS/!2DNN22D4K4KL>>00|1DHY0Z"$455r   ))r   r   r   g      ?)r   ztuple[int, int]r   r   r   r   )r$   
np.ndarrayr%   z	list[int]r&   r   returnr7   )r&   dict[str, Any]r2   r9   r8   zdict[str, list[int]])
r   r   r   __doc__r	   r   r    r'   r6   __classcell__)r"   s   @r   r   r      sM    4l,  /5		+	 	 		A6r   )r:   
__future__r   typingr   r   numpynpalbucorer   pydanticr   albumentations.core.pydanticr   (albumentations.core.transforms_interfacer	   r
   
functionalr   __all__MIN_DROPOUT_CHANNEL_LIST_LENGTHr   r   r   r   <module>rG      sA    # !  % # ; ` '
"# k6' k6r   